RSS-Feed abonnieren
DOI: 10.1055/s-2006-939706
Metal-Free Brønsted Acid Catalyzed Transfer Hydrogenation - New Organocatalytic Reduction of Quinolines
Publikationsverlauf
Publikationsdatum:
24. April 2006 (online)

Abstract
The first metal-free Brønsted acid catalyzed hydrogenation of quinolines using Hantzsch dihydropyridine as the hydrogen source has been developed. This, so far unprecedented organocatalytic reduction of heteroaromatic compounds provides a variety of differently substituted 1,2,3,4-tetrahydroquinolines in excellent yields under mild reaction conditions using a remarkably low amount of Brønsted acid catalyst.
Key words
Brønsted acid - Hantzsch dihydropyridine - transfer hydrogenation - organocatalysis - reduction - 1,2,3,4-tetrahydroquinoline
- 1 For review, see:  
            Katritzky AR.Rachwal S.Rachwal B. Tetrahedron 1996, 52: 15031
- For examples, see:
- 2a 
             
            Jacquemond-Collet I.Benoit-Vical F. .Valentin A.Stanislas E.Mallié M.Fourasté I. Planta Med. 2002, 68: 68
- 2b 
             
            Wallace OB.Lauwers KS.Jones SA.Dodge JA. Bioorg. Med. Chem. Lett. 2003, 13: 1907
- 2c 
             
            Di Fabio R.Tranquillini E.Bertani B.Alvaro G.Micheli F.Sabbatini F.Pizzi MD.Pentassuglia G.Pasquarello A.Messeri T.Donati D.Ratti E.Arban R.Dal Forno G.Reggiani A.Barnaby RJ. Bioorg. Med. Chem. Lett. 2003, 13: 3863
- 2d 
             
            Asolkar RN.Schröder D.Heckmann R.Lang S.Wagner-Döbler I.Laatsch H. J. Antibiot. 2004, 57: 17
- 2e 
             
            Lombardo LJ.Camuso A.Clark J.Fager K.Gullo-Brown J.Hunt JT.Inigo I.Kan D.Koplowitz B.Lee F.McGlinchey K.Qian LG.Ricca C.Rovnyak G.Traeger S.Tokarski J.Williams DK.Wu LI.Zhao YF.Manne V.Bhide RS. Bioorg. Med. Chem. Lett. 2005, 15: 1895
- 2f 
             
            Nallan L.Bauer KD.Bendale P.Rivas K.Yokoyama K.Horney CP.Pendyala PR.Floyd D.Lombardo LJ.Williams DK.Hamilton A.Sebti S.Windsor WT.Weber PC.Buckner FS.Chakrabarti D.Gelb MH.Van Voorhis WC. J. Med. Chem. 2005, 48: 3704
- For some recent publications, see:
- 3a 
             
            Fujita K.Yamaguchi R. Synlett 2005, 560
- 3b 
             
            Lam KH.Xu LJ.Feng LC.Fan QH.Lam FL.Lo WH.Chan ASC. Adv. Synth. Catal. 2005, 347: 1755
- 3c 
             
            Xu LK.Lam KH.Ji JX.Wu J.Fan QH.Lo WH.Chan ASC. Chem. Commun. 2005, 1390
- 3d 
             
            Lu SM.Han XW.Zhou YG. Adv. Synth. Catal. 2004, 346: 909
- 3e 
             
            Yang PY.Zhou YG. Tetrahedron: Asymmetry 2004, 15: 1145
- 3f 
             
            Wang WB.Lu SM.Yang PY.Han XW.Zhou YG. J. Am. Chem. Soc. 2003, 125: 10536
- 3g 
             
            Michael JP. Nat. Prod. Rep. 2005, 22: 627
- 4a 
             
            Ranu BC.Jana U.Sarkar A. Synth. Commun. 1998, 28: 485
- 4b 
             
            Srikrishna A.Reddy TJ.Viswajanani R. Tetrahedron 1996, 52: 1631
- 4c 
             
            Nose A.Kudo T. Chem. Pharm. Bull. 1984, 32: 2421
- 5 
             
            Rueping M.Azap C.Sugiono E.Theissmann T. Synlett 2005, 2367
- 6a 
             
            Rueping M.Sugiono E.Azap C.Theissmann T.Bolte M. Org. Lett. 2005, 7: 3781
- 6b For a subsequent optimization of this procedure, see:  
            Hoffmann S.Seayad A.List B. Angew. Chem. Int. Ed. 2005, 44: 7424 ; Angew. Chem. 2005, 117, 7590
- 6c 
             
            Storer RI.Carrera DE.Ni Y.MacMillan DWC. J. Am. Chem. Soc. 2006, 128: 84
- For recent conjugate reductions of α,β-unsaturated aldehydes, see:
- 7a 
             
            Yang JW.Hechavarria Fonseca MT.List B. Angew. Chem. Int. Ed. 2004, 43: 6660 ; Angew. Chem. 2004, 116, 6829
- 7b 
             
            Yang JW.Hechavarria Fonseca MT.Vignola N.List B. Angew. Chem. Int. Ed. 2005, 44: 108 ; Angew. Chem. 2005, 117, 110
- 7c 
             
            Ouellet SG.Tuttle JB.MacMillan DWC. J. Am. Chem. Soc. 2005, 127: 32
- 7d 
             
            Adolfsson H. Angew. Chem. Int. Ed. 2005, 44: 3340 ; Angew. Chem. 2005, 117, 3404
- 7e 
             
            Lui Z.Han B.Lui Q.Zhang W.Yang L.Lui ZL.Yu W. Synlett 2005, 1579
- 7f 
             
            Garden SJ.Guimarães CRW.Corréa B.Oliveira CAF.Pinto AC.Alencastro RB. J. Org. Chem. 2003, 68: 8815
- For reviews on chiral Brønsted acid catalysis, see:
- 9a 
             
            Schreiner PR. Chem. Soc. Rev. 2003, 32: 289
- 9b 
             
            Pihko PM. Angew. Chem. Int. Ed. 2004, 43: 2062 ; Angew. Chem. 2004, 116, 2110
- 9c 
             
            Bolm C.Rantanen T.Schiffers I.Zani L. Angew. Chem. Int. Ed. 2005, 44: 1758 ; Angew. Chem. 2005, 117, 1788
- For the use of chiral phosphoric acid catalysts, see:
- 9d 
             
            Akiyama T.Itoh J.Yokota K.Fuchibe K. Angew. Chem. Int. Ed. 2004, 43: 1566 ; Angew. Chem. 2004, 116, 1592
- 9e 
             
            Uraguchi D.Terada M. J. Am. Chem. Soc. 2004, 126: 5356
- 9f 
             
            Uraguchi D.Sorimachi K.Terada M. J. Am. Chem. Soc. 2004, 126: 11804
- 9g 
             
            Akiyama T.Morita H.Itoh J.Fuchibe K. Org. Lett. 2005, 7: 2583
- 9h 
             
            Akiyama T.Saitoh Y.Morita H.Fuchibe K. Adv. Synth. Catal. 2005, 347: 1523
- 9i 
             
            Uraguchi D.Terada M. J. Am. Chem. Soc. 2004, 126: 5356
- 9j 
             
            Uraguchi D.Sorimachi K.Terada M. J. Am. Chem. Soc. 2004, 126: 11804
- 9k 
             
            Uraguchi D.Sorimachi K.Terada M. J. Am. Chem. Soc. 2005, 127: 9360
- 9l 
             
            Rowland GB.Zhang H.Rowland EB.Chennamadhavuni S.Wang Y.Antilla JC. J. Am. Chem. Soc. 2005, 127: 15696
- 9m 
             
            Terada M.Sorimachi K.Uraguchi D. Synlett 2006, 133
- 9n 
             
            Akiyama T.Tamura Y.Itoh J.Morita H.Fuchibe K. Synlett 2006, 141
- 9o 
             
            Rueping M.Sugiono E.Azap C. Angew. Chem. Int. Ed. 2006, 45: 2617 ; Angew. Chem. 2006, 118: 2679
- 10 An extension of this procedure to an asymmetric variant by employing a chiral phosphate
            catalyst has been achieved:  
            Rueping M.Antonchick AP.Theissmann T. Angew. Chem. Int. Ed. 2006, 45: in press
References and Notes
         General Procedure for the Brønsted Acid Catalyzed Transfer Hydrogenation of Quinolines.
         
In a typical experiment quinoline (20 mg), diphenyl phosphate (1 mol%) and Hantzsch
         dihydropyridine 2 (2.4 equiv) were suspended in benzene (2 mL) in a screw-capped vial and flushed with
         argon. The resulting mixture was allowed to stir at 60 °C for 12 h. The solvent was
         removed under reduced pressure and purification of the crude product by column chromatography
         on silica gel afforded the pure 1,2,3,4-tetrahydroquinoline. For representative examples,
         see:
7-Chloro-1,2,3,4-tetrahydro-4-phenylquinoline (6o): yield 19.3 mg, 94%. IR (KBr): 3412, 3396, 2919, 1604, 1492, 1089, 700 cm-1. 1H NMR (250 MHz, CDCl3): δ = 1.88-2.18 (m, 2 H, C-3H), 3.08-3.28 (m, 2 H, C-2H), 3.94 (br s, 1 H, NH), 4.01
         (t, J = 6.1 Hz, 1 H, C-4H), 6.39-6.48 (m, 2 H, Ar), 6.56-6.59 (m, 1 H, Ar), 6.99-7.07 (m,
         2 H, Ar), 7.09-7.27 (m, 3 H, Ar). 13C NMR (250 MHz, CDCl3): δ = 30.7, 38.9, 42.4, 113.4, 116.8, 121.7, 126.3, 128.4, 128.6, 131.5, 132.6, 145.9,
         146.0. MS-ESI: m/z = 243.8 [M+], 245.8 [M+]. Anal. Calcd for C15H14ClN (243.73): C, 73.92; H, 5.79; N, 5.75. Found: C, 73.69; H, 5.54; N, 5.74.
1,2,3,4-Tetrahydro-4,7-diphenylquinoline (6p): yield 18.6 mg, 91%. IR (KBr): 3356, 3292, 3024, 2945, 2924, 1562, 1485, 1468, 1319,
         758, 698 cm-1. 1H NMR (250 MHz, CDCl3): δ = 1.93-2.27 (m, 2 H, C-3H), 3.13-3.34 (m, 2 H, C-2H), 3.96 (br s, 1 H, NH), 4.10
         (t, J = 6.1 Hz, 1 H, C-4H), 6.69-6.73 (m, 3 H, Ar), 7.10-7.38 (m, 8 H, Ar), 7.45-7.50 (m,
         2 H, Ar). 13C NMR (250 MHz, CDCl3): δ = 31.2, 39.4, 42.7, 112.7, 116.2, 122.7, 126.2, 127.0, 128.4, 128.6, 128.7, 130.8,
         140.4, 141.5, 145.2, 146.5. MS-ESI: m/z = 285.8 [M+]. Anal. Calcd for C21H19N (285.38): C, 88.38; H, 6.71; N, 4.91. Found: C, 88.11; H, 6.80; N, 4.79.
 
    