Subscribe to RSS
DOI: 10.1055/s-2006-939720
New Methods of Imidazole Functionalization - From Imidazole to Marine Alkaloids
Publication History
Publication Date:
24 April 2006 (online)
Abstract
The pyrrole-imidazole family of marine alkaloids, the so-called oroidin natural products, exhibits an impressive diversity of structural motifs. The majority of these natural products contain one or more imidazole moieties intricately embedded within a polycyclic framework and thus present significant challenges to extant synthetic methods. Our approach to this problem has centered on the development of methods for the elaboration of simple imidazoles. This Account describes the results of these efforts leading to the development of a variety of methods, including cycloadditions, oxidative and transition-metal-catalyzed reactions.
-
1 Diels-Alder Chemistry of Vinylimidazoles
-
1.1 Substitution of 4(5)-Iodoimidazole
-
1.2 Selective Deiodination of 4,5-Diiodoimidazoles
-
1.3 Isomerization of 4/5-Iodoimidazoles
-
2 Substituent Effects
-
2.1 Vinyl Substituents
-
2.2 Substituents at the 2-Position
-
3 Intramolecular Variants
-
4 Fused to Spiro Systems
-
4.1 Regiochemistry and Mechanism
-
5 Ring-Closing Metathesis
-
6 Pd-π-Allyl Chemistry of Imidazole Derivatives
-
7 Summary
Key words
cycloaddition - cross-coupling - heterocycles - oxidation - rearrangement
-
1a
Kinnel R.Gehrken H.-P.Swali R.Skoropowski G.Scheuer PJ. J. Org. Chem. 1998, 63: 3281 ; the isolation and structural determination of these natural products were reported earlier in a preliminary communication -
1b
Kinnel RB.Gehrken HP.Scheuer PJ. J. Am. Chem. Soc. 1993, 115: 3376 - For excellent reviews of the synthetic efforts towards this family, see:
-
2a
Hoffmann H.Lindel T. Synthesis 2003, 1753 -
2b For a current review of synthetic approaches toward palau’amine, see:
Jacquot DEN.Lindel T. Curr. Org. Chem. 2005, 9: 1551 - 3
Overman LE.Rogers BN.Tellow JE.Trenkle WC. J. Am. Chem. Soc. 1997, 119: 7159 ; additional reports have appeared from this group describing additional studies toward this group of targets - see ref. 18 - 4
McAlpine IJ.Armstrong RW. J. Org. Chem. 1996, 61: 5674 - For isolation see:
-
5a
Forenza L.Minale R.Riccio R.Fattorusso E. J. Chem. Soc., Chem. Commun. 1971, 1129 -
5b For a structure correction and synthesis, see:
Garcia EE.Benjamin LE.Fryer RI. J. Chem. Soc., Chem. Commun. 1973, 78 -
6a
Ahond A.Zurita MB.Colin M.Fizames C.Laboute P.Lavelle F.Laurent D.Poupat C.Pusset J. C. R. Acad. Sci. 1988, 307: 145 - For total syntheses, see:
-
6b
Bedoya Zurita M.Ahond A.Poupat C.Potier P. Tetrahedron 1989, 45: 6713 -
6c
Commercon A.Paris JM. Tetrahedron Lett. 1991, 32: 4905 -
6d
Commercon A.Gueremy C. Tetrahedron Lett. 1991, 32: 1419 - For isolation, see:
-
7a
Sharma G.Magdoff-Fairchild B. J. Org. Chem. 1977, 42: 4188 - For total syntheses, see:
-
7b
Foley LH.Büchi G. J. Am. Chem. Soc. 1982, 104: 1176 -
7c
Wiese KJ.Yakushijin K.Horne DA. Tetrahedron Lett. 2002, 43: 5135 -
7d
Poullennec KG.Romo D. J. Am. Chem. Soc. 2003, 125: 6344 -
7e
Chung R.Yu E.Incarvito CD.Austin DJ. Org. Lett. 2004, 6: 3881 -
7f
Feldman KS.Skoumbourdis AP. Org. Lett. 2005, 7: 929 -
7g
Jacquot DEN.Zöllinger M.Lindel T. Angew. Chem. Int. Ed. 2005, 44: 2295 - For isolation, see:
-
8a
de Nanteuil G.Ahond A.Guilheim J.Poupat C.Dau ETH.Potier P. Tetrahedron 1985, 41: 6019 -
8b
Fedoreyev SA.Utkina NK.Ilyin SG.Reshetnyak MV.Maximov OB. Tetrahedron Lett. 1986, 27: 3177 -
8c
For total synthesis, see: ref. 7c.
- For isolation, see:
-
9a
Walker RP.Faulkner DJ.Van Engen D.Clardy J. J. Am. Chem. Soc. 1981, 103: 6772 - For total syntheses, see:
-
9b
Baran PS.Zografos AL.O’Malley DP. J. Am. Chem. Soc. 2004, 126: 3726 -
9c
Birman VB.Jiang X.-T. Org. Lett. 2004, 6: 2369 - For isolation, see:
-
10a
Kobayashi J.Tsuda M.Murayama T.Nakamura H.Ohizumi Y.Ishibashi M.Iwamura M.Ohta T.Nozoe S. Tetrahedron 1990, 46: 5579 -
10b
Keifer PA.Schwartz RE.Koker MES.Hughes RG.Rittschof D.Rinehart KL. J. Org. Chem. 1991, 56: 2965 -
10c
Williams DH.Faulkner DJ. Tetrahedron 1996, 52: 5381 -
10d For total synthesis, see:
Baran PS.O’Malley DP.Zografos AL. Angew. Chem. Int. Ed. 2004, 43: 2674 -
10e Dimethyl ageliferin:
Kawasaki I.Sakaguchi N.Fukushima N.Fujioka N.Nikaido F.Yamashita M.Ohta S. Tetrahedron Lett. 2002, 43: 4377 - 11
Kobayashi J.Suzuki M.Tsuda M. Tetrahedron 1997, 53: 15681 - 12
Endo T.Tsuda M.Okada T.Mitsuhashi S.Shima H.Kikuchi K.Mikami Y.Fromont J.Kobayashi J. J. Nat. Prod. 2004, 67: 1262 - 13
Urban S.de Almeida Leone P.Carroll AR.Fechner GA.Smith J.Hooper JNA.Quinn RJ. J. Org. Chem. 1999, 64: 731 - 14
Nishimura S.Matsunaga S.Shibazaki M.Suzuki K.Furihata K.van Soest RWM.Fusetani N. Org. Lett. 2003, 5: 2255 - For isolation, see:
-
15a
Tsukamoto S.Kato H.Hirota H.Fusetani N. J. Nat. Prod. 1996, 59: 501 -
15b For total synthesis, see:
Olofson A.Yakushijin K.Horne DA. J. Org. Chem. 1997, 62: 7918 - 17
Al Mourabit A.Potier P. Eur. J. Org. Chem. 2001, 237 -
18a
Belanger G.Hong F.-T.Overman LE.Rogers BN.Tellow JE.Trenkle WC. J. Org. Chem. 2002, 67: 7880 -
18b
Katz JD.Overman LE. Tetrahedron 2004, 60: 9559 - 19
Starr JT.Koch G.Carreira EM. J. Am. Chem. Soc. 2000, 122: 8793 -
20a
Dilley AS.Romo D. Org. Lett. 2001, 3: 1535 -
20b
Dransfield PJ.Wang S.Dilley A.Romo D. Org. Lett. 2005, 7: 1679 - 21
Koenig SG.Miller SM.Leonard KA.Lowe RS.Chen BC.Austin DJ. Org. Lett. 2003, 5: 2203 - 22
Garrido-Hernandez H.Nakadai M.Vimolratana M.Li Q.Doundoulakis T.Harran PG. Angew. Chem. Int. Ed. 2005, 44: 765 -
23a
Yamazaki C.Katayama K.Suzuki K. J. Chem. Soc., Perkin Trans. 1 1990, 3085 -
23b
Kosaka K.Maruyama K.Nakamura H.Ikeda M. J. Heterocycl. Chem. 1991, 28: 1941 -
23c
Wuonola MA.Smallheer JM. Tetrahedron Lett. 1992, 33: 5697 -
23d
Xu Y.-Z.Yakushijin K.Horne DA. Tetrahedron Lett. 1993, 34: 6981 -
23e
Neipp C.Ranslow PB.Wan Z.Snyder JK. Tetrahedron Lett. 1997, 38: 7499 -
23f
Wan Z.Snyder JK. Tetrahedron Lett. 1997, 38: 7495 -
23g
Dang Q.Liu Y.Erion MD. J. Am. Chem. Soc. 1999, 121: 5833 -
23h
Wan Z.-K.Woo GHC.Snyder JK. Tetrahedron 2001, 57: 5497 -
23i
Lahue BR.Wan Z.-K.Snyder JK. J. Org. Chem. 2003, 68: 4345 -
23j
Lahue BR.Lo S.-M.Wan ZK.Woo GHC.Snyder JK. J. Org. Chem. 2004, 69: 7171 - 24
Sepulveda-Arques J.Abarca-Gonzalez B.Medio-Simon M. Adv. Heterocycl. Chem. 1995, 63: 339 - For other types of pericyclic reactions involving imidazoles, see:
-
25a
Begg CG.Grimmett MR.Wethey PD. Aust. J. Chem. 1973, 26: 2435 -
25b
Commerçon A.Posinet G. Tetrahedron Lett. 1990, 31: 3871 -
25c
Bierer DE.O’Connell JF.Parquette JR.Thompson CM.Rapoport H. J. Org. Chem. 1992, 57: 1390 -
25d
Yashioka H.Choshi T.Sugino E.Hibino S. Heterocycles 1995, 41: 161 -
25e
Berlinck RGS.Britton R.Piers E.Lim L.Roberge M.Moreira da Rocha R.Anderson RJ. J. Org. Chem. 1998, 63: 9850 -
25f
D’Auria M.Racioppi R. J. Photochem. Photobiol., A 1998, 112: 145 - 26
Walters MA.Lee MD. Tetrahedron Lett. 1994, 35: 8307 - 27
Deghati PYF.Wanner MJ.Koomen G.-J. Tetrahedron Lett. 1998, 39: 4561 - 30
Overberger CG.Smith TW. Macromolecules 1975, 8: 401 ; see also ref. 33 - 31
Kirk KL. J. Heterocycl. Chem. 1985, 57: 57 -
32a
Cliff MD.Pyne SG. J. Org. Chem. 1995, 60: 2378 -
32b
Cliff MD.Pyne SG. Tetrahedron 1996, 52: 13703 -
32c
Cliff MD.Pyne SG. J. Org. Chem. 1997, 62: 1023 -
33a
Kokosa JM.Szafasz RA.Tagupa E. J. Org. Chem. 1983, 48: 3605 -
33b
Altman J.Wilchek M. J. Heterocycl. Chem. 1988, 25: 915 - 34
Lovely CJ.Du H.Dias HVR. Org. Lett. 2001, 3: 1319 - 35
Benjes P.Grimmett R. Heterocycles 1994, 37: 735 - 36
Lovely CJ.Du H.Dias HVR. Heterocycles 2003, 60: 1 - 37
Pilarski B. Liebigs Ann. Chem. 1983, 1078 -
38a
Dehmel F.Abarbri M.Knochel P. Synlett 2000, 345 -
38b
Abarbri M.Thibonnet J.Bérillon L.Dehmel F.Rottländer M.Knochel P. J. Org. Chem. 2000, 65: 4618 -
38c
Knochel P.Dohle W.Gommermann N.Kneisel F.Kopp F.Korn T.Sapountzis I.Vu V. Angew. Chem. Int. Ed. 2003, 42: 4302 -
39a
Iddon B.Lim BL. J. Chem. Soc., Perkin Trans. 1 1983, 735 -
39b
O’Connell JF.Parquette J.Yelle WE.Wang W.Rapoport H. Synthesis 1988, 767 -
39c
Groziak MP.Wei L. J. Org. Chem. 1991, 56: 4296 -
39d
Kawasaki I.Yamashita M.Ohta S. Chem. Pharm. Bull. 1996, 44: 1831 -
39e
Carver DS.Lindell SD.Saville-Stones EA. Tetrahedron 1997, 53: 14481 - 40
He Y.Chen Y.Du H.Schmid LA.Lovely CJ. Tetrahedron Lett. 2004, 45: 5529 - 43
Du H. PhD Dissertation The University of Texas at Arlington; Arlington, Texas: 2004. -
44a Vinylfuran:
Kusurkar RS.Bhosale DK. Synth. Commun. 1990, 20: 101 -
44b Vinylpyrrole:
Jones RA.Marriot MTP.Rosenthal WP.Arques JS. J. Org. Chem. 1980, 45: 4515 - Vinylthiophene:
-
44c
Abarca B.Ballesteros R.Enriquez E.Jones G. Tetrahedron 1987, 43: 269 -
44d
Abarca B.Ballesteros R.Enriquez E.Jones G. Tetrahedron 1985, 41: 2435 - 45
Acheson RM.Foxton MW.Abbott PJ.Mills KR. J. Chem. Soc. C 1967, 2218 - 46
Lovely CJ.Du H.He Y.Dias HVR. Org. Lett. 2004, 6: 735 - 47
Pirrung MC.Pei T. J. Org. Chem. 2000, 65: 2229 -
48a
He, Y.; Lovely, C. J. unpublished results (see also ref. 63).
-
48b
Sivappa, R.; Lovely, C. J. unpublished results.
-
50a
Nahm S.Weinreb SM. Tetrahedron Lett. 1981, 22: 3815 -
50b
Oster TA.Harris TM. Tetrahedron Lett. 1983, 24: 1851 - 51
Barrero AF.Sanchez JF.Oltra JE.Teva D. J. Heterocycl. Chem. 1991, 28: 939 - 53
Kawasaki I.Taguchi Y.Yamashita M.Ohta S. Heterocycles 1996, 43: 1375 -
54a
Cuberes MR.Moreno-Manas M.Trius A. Synthesis 1985, 302 -
54b
Moreno-Manas M.Bassa J.Llado N.Pleixats R. Heterocycles 1990, 27: 673 -
55a
The precise role of TMEDA is unknown at this time, however, in its absence mixtures of products derived from reaction at the 2-amino moiety and/or the N3-imidazole nitrogen were obtained. TMEDA has been used previously as an additive in selective introduction of a Boc moiety in 2-aminothiazole derivatives, where a similar selectivity issue arises.
-
55b
Koyanagi K, andTsucha S. inventors; Jpn. Kokai Tokkyo Koho 93,164,438. Preparation of (alkoxycarbonyl-amino)heterocycles: ; Chem. Abstr. 1995, 122, 265365 -
55c
Koyanagi K, andTsucha S. inventors; Jpn Kokai Tokkyo Koho 93,164,378. Method for Preparation of N-Heterocyclyl-urethane: ; Chem. Abstr. 1995, 122, 290878 - 57
Wuonola MA.Smallheer JM. Tetrahedron Lett. 1992, 33: 5697 - 59
Wu H. MS Thesis The University of Texas at Arlington; Arlington, Texas: 2001. -
60a
He Y.Chen Y.Wu H.Lovely CJ. Org. Lett. 2003, 5: 3623 -
60b
Fenton, H. M. unpublished results.
- We have generally found that these sulfonyl urea derivatives are very convenient to work with many of the substrates can be assembled in good yields and with minimal purification (no chromatography), thus much of chemistry is done with this protecting group. There are some drawbacks with its use, however. It has been found that the DMAS group can migrate to the sterically least encumbered nitrogen in several derivatives during prolonged heating during Diels-Alder reaction. Although this can be circumvented by using less labile groups, the construction of precursors can be complicated with SN2′-type processes particularly in the Bn-series (see Scheme 39 and Table 10). For related observations, see:
-
61a
Kim JW.Abdelaal SM.Bauer L.Heimer NE. J. Heterocycl. Chem. 1995, 32: 611 -
61b
Bhagavatula L.Premchandran RH.Plata DJ.King SA.Morton HE. Heterocycles 2000, 53: 729 -
62a
Gschwend HW.Lee AO.Meier HP. J. Org. Chem. 1973, 38: 2169 -
62b
Jung ME.Gervay J. Tetrahedron Lett. 1988, 29: 2429 -
62c
Jung ME.Gervay J. J. Am. Chem. Soc. 1991, 113: 224 -
62d
Jung ME. Synlett 1990, 186 -
62e
Jung ME. Synlett 1999, 843 - 63
He Y. PhD Dissertation The University of Texas at Arlington; Arlington, Texas: 2005. - 66
Ishikawa T.Senzaki M.Kadoya R.Morimoto T.Miyake N.Izawa M.Saito S.Kobayashi J. Am. Chem. Soc. 2001, 123: 4607 -
68a
Richey JHG.McLane RC.Phillips CJ. Tetrahedron Lett. 1976, 17: 233 -
68b
Adam W.Beck AK.Pichota A.Saha-Möller CR.Seebach D.Vogel N.Zhang R. Tetrahedron: Asymmetry 2003, 14: 1355 - 69 Although the preparation of the requisite benzhydryl hydroxylamine is described in the literature (ref. 68), our attempts to repeat these methods were not especially successful. We have found that this hydroxylamine can be obtained reproducibly and on reasonably large scales with NaCNBH3 and careful control of the pH, using methyl orange as an indicator. For related examples, see:
Bernhart C.Wermuth C.-G. Tetrahedron Lett. 1974, 15: 2493 - 73
Zhang X.Foote CS. J. Am. Chem. Soc. 1993, 115: 8867 -
74a
Adam W.Ahrweiler M.Sauter M.Schmiedeskamp B. Tetrahedron Lett. 1993, 34: 5247 -
74b
Adam W.Ahrweiler M.Peters K.Schmiedeskamp B. J. Org. Chem. 1994, 59: 2733 -
75a
Bernhart CA.Perreaut PM.Ferrari BP.Muneaux YA.Assens J.-LA.Clement J.Haudricourt F.Muneaux CF.Taillades JE.Vignal M.-A.Gougat J.G uiraudou PR.Lacour CA.Roccon A.Cazaubon CF.Breliere J.-C.Le Fur G.Nisato D. J. Med. Chem. 1993, 36: 3371 -
75b See also:
Knaggs AR.Cable KM.Cannell RJP.Sidebottom PJ.Wells GN.Sutherland DR. Tetrahedron 1995, 36: 477 - 82
Klutchko S.Hodges JC.Blankley CJ.Colbry NL. J. Heterocycl. Chem. 1991, 28: 97 -
83a
Regel E.Buechel K.-H. Justus Liebigs Ann. Chem. 1977, 145 -
83b
Regel E. Justus Liebigs Ann. Chem. 1977, 159 - Attempts to employ a direct Curtius rearrangement using diphenylphosphoryl azide and the carboxylic acid were unsuccessful in our hands, although it has been employed previously in a few limited cases with imidazoles; see:
-
84a
Lin J.Thompson CM. J. Heterocycl. Chem. 1994, 31: 1701 -
84b
Choshi T.Tonari A.Yoshioka H.Sugino E.Hibino S. J. Org. Chem. 1993, 58: 7952 - For related systems, see:
-
85a
Garcia-Lopez MT.Herranz R. J. Heterocycl. Chem. 1982, 19: 233 -
85b
Dolensky B.Takeuchi Y.Cohen LA.Kirk KL. J. Fluorine Chem. 2001, 107: 147 - 86 A similar dimeric species was obtained in the oxidation of an indole derivative; see:
Mithani S.Drew DM.Rydberg EH.Taylor NJ.Mooibroek S.Dmitrienko GI. J. Am. Chem. Soc. 1997, 119: 1159 - 88
Davis FA.Sheppard AC. Tetrahedron 1989, 45: 5703 - 90
Sannigrahi M. Tetrahedron 1999, 55: 9007 -
91a
Schuster S.Blechert S. Angew. Chem., Int. Ed. Engl. 1997, 36: 2037 -
91b
Grubbs RH.Chan S. Tetrahedron 1998, 54: 4413 -
91c
Blechert S. Pure Appl. Chem. 1999, 71: 1393 -
91d
Pandit UK.Overkleft HS.Borer BC.Bieräugel H. Eur. J. Org. Chem. 1999, 959 -
91e
Phillips AJ.Abell AD. Aldrichimica Acta 1999, 32: 75 -
91f
Randall ML.Snapper ML. J. Mol. Catal. A: Chem. 1999, 133: 29 -
91g
Fürstner A. Angew. Chem. Int. Ed. 2000, 39: 3012 -
91h
Trnka TM.Grubbs RH. Acc. Chem. Res. 2001, 34: 18 -
91i
Walters MA. Prog. Heterocycl. Chem. 2003, 15: 1 -
91j
Deiters A.Martin SF. Chem. Rev. 2004, 104: 2199 -
91k
McReynolds MD.Dougherty JM.Hanson PR. Chem. Rev. 2004, 109: 2239 -
91l
Grubbs RH. Tetrahedron 2004, 60: 7117 - For isolation, see:
-
92a
D’Ambrosio M.Guerriero A.Debitus C.Ribes O.Pusset J.Leroy S.Pietra F. J. Chem. Soc., Chem. Commun. 1993, 1305 - For total synthesis, see:
-
92b
Anderson GT.Chase CE.Koh Y.Stien D.Weinreb SM. J. Org. Chem. 1998, 63: 7594 -
92c
Stien D.Anderson GT.Chase CE.Koh Y.Weinreb SM. J. Am. Chem. Soc. 1999, 121: 9574 -
92d
Feldman KS.Mingo PA.Hawkins PCD. Heterocycles 1999, 51: 1283 -
92e
Feldman KS.Saunders JC. J. Am. Chem. Soc. 2002, 124: 9060 -
92f
Feldman KS.Saunders JC.Wrobleski ML. J. Org. Chem. 2002, 67: 7096 -
92g
Baron E.O’Brien P.Towers TD. Tetrahedron Lett. 2002, 43: 723 -
92h
Hale KJ.Domostoj MM.Tocher DA.Irving E.Scheinmann F. Org. Lett. 2003, 5: 2927 -
92i
Domostoj MM.Irving E.Scheinmann F.Hale KJ. Org. Lett. 2004, 6: 2615 -
92j
Davis FA.Deng J. Org. Lett. 2005, 7: 621 - 93
Ung T.Hejl A.Grubbs RH.Schrodi Y. Organometallics 2004, 23: 5399 -
94a
Sezen B.Sames D. J. Am. Chem. Soc. 2003, 125: 5274 -
94b
Sezen B.Sames D. J. Am. Chem. Soc. 2003, 125: 10580 - 95
Comins D.Meyers AI. Synthesis 1978, 403 - 96
Chen Y.Dias HVR.Lovely CJ. Tetrahedron Lett. 2003, 44: 1379 -
97a
Gracias V.Gasiecki AF.Djuric SW. Org. Lett. 2005, 7: 3183 -
97b
Gracias V.Gasiecki AF.Djuric SW. Tetrahedron Lett. 2005, 46: 9046 - 98 A similar approach has been employed to elaborate vinylfuran derivatives; see:
Cooper JA.Cornwall P.Dell CP.Knight DW. Tetrahedron Lett. 1988, 29: 2107 -
99a
Tsuji J. Palladium Reagents and Catalysts Wiley; New York: 1996. Chap. 4. p.290-440 -
99b
Trost BM.Van Vranken DL. Chem. Rev. 1996, 96: 395 -
99c
Handbook of Organopalladium Chemistry for Organic Synthesis
Negishi E.-I. Wiley-Interscience; New York: 2002. -
100a
Miyabe H.Yoshida K.Matsumura A.Yamauchi M.Takemoto Y. Synlett 2003, 567 -
100b
Miyabe H.Matsumura A.Yoshida K.Yamauchi M.Takemoto Y. Synlett 2004, 2123 -
100c
Miyabe H.Yoshida K.Reddy VK.Matsumura A.Takemoto Y. J. Org. Chem. 2005, 70: 5630 -
100d For a review of this chemistry, see:
Miyabe H.Takemoto Y. Synlett 2005, 1641 - 102
Papadopoulas EP. J. Org. Chem. 1972, 37: 351
References and Notes
This biosynthetic proposal was suggested by a reviewer of ref. 1a.
28These authors did not report the isolation (or observation) of the initial adduct.
29Since the enamine is effectively locked in an s-trans conformation it cannot react further at least as a diene in a Diels-Alder reaction.
41The bis-Diels-Alder adduct was not obtained from reactions involving the N-methyl derivative. We do not have an unequivocal explanation for this outcome; however, it may be related to differences in the size of the N-substituent (methyl vs. benzyl). With the smaller methyl group, reduced steric compression is experienced on aromatizing the enamine adduct 62f and thus this occurs faster to provide either 54f or 55f before oxidation can occur.
42The bis-Diels-Alder adduct was not obtained in the presence of a radical scavenger (BHT).
49We knew by the time that this chemistry was being investigated that reactions with electrophiles occurred predominantly from the β-face, and thus the chloro moiety would be endo, precisely that required for palau’amine.
52In addition to the desired methyl ester a small quantity (ca. 12%) of a diimidazolyl ketone was obtained.
56By the time that these studies were underway, we knew already that direct rearrangement of the enamine was not feasible, but the aromatic Diels-Alder adducts could be rearranged.
58The initial use of trityl moiety as a protecting group was largely dictated by the ready accessibility of the corresponding protected urocanic acid derivative, where the preparation of 4-isomer was described in the literature. When we commenced this aspect of the study, effective methods for the selective preparation of the 4-isomer were lacking. Further, we expected from the preliminary intermolecular results that these substrates would be viable.
64In these cases inseparable mixtures of the two cycloadducts were obtained. Reduction of the lactam to the amine was accomplished with LiAlH4 leading to a single product, indicating the regiochemical relationship between the two cycloadducts. He, Y.; Pasupathy, K.; Lovely C. J. unpublished results.
65Attempted reductive cleavage of the amide to the corresponding amino alcohol was compromised by cleavage of the DMAS group under the forcing conditions required.
67In fact given the results obtained subsequently with the benzhydryl analogue, it is quite reasonable to assume that both isomers are formed, but that the significant decomposition precluded isolation of the minor isomer.
70We have found that the magnitude of this coupling constant (J = 10-12 Hz) falls into a very narrow range for both the lactams and oxazine systems prepared in the course of this study and is indicative of a trans ring fusion.
71While it is conceivable that some of the endo-chloride was formed it would not have been sufficient to account for the diastereomeric ratios of the ethers observed via a purely SN2 pathway.
72The Romo group has encountered a similar stereochemical problem in their Diels-Alder/rearrangment approach to palau’amine. See ref. 20.
76This substrate was chosen for purely pragmatic reasons and not by design. As a result of deconvoluting events related to the reaction of 60e with NPM described in Scheme [15] , we had accumulated a large supply of 64e.
77The free alcohols were poor substrates due to benzylic oxidation.
78At least to date, it has been difficult to incorporate other classes of protecting groups on this hydroxyl group, although the silylation can be accomplished easily.
79During the course of this investigation we have prepared a large number of spiro-fused imidazolones and have not observed any significant differences in the spectroscopic properties as a function of stereochemistry.
80Tetrahydrobenzimidazole can be readily obtained through the partial reduction of benzimidazole.
81This assignment is based on the chemical shift of the imidazolone carbonyl in the 13C NMR spectrum which falls in a very narrow range (δC=O = 180.1-185.8 ppm) and is substantially different from the 4-isomer of 189 (δC=O = 197.4 ppm).
87Initial attempts to trigger this rearrangement using conditions that generate DMDO catalytically have not been successful. This is unfortunate since the use of the more reactive fluorinated variants of DMDO and asymmetric variants are more cost effective when conducted with catalytic loadings of the ketone.
89Rasapalli, S.; Devine, T.; Koswatta, P.; Lovely, C. J. unpublished results.
101Krishnamoorthy, P.; Sivappa, R.; Lovely, C. J. Tetrahedron, submitted.