Subscribe to RSS
DOI: 10.1055/s-2007-1000864
Barbier Conditions for Reformatsky and Alkylation Reactions on Trifluoromethyl Aldimines
Publication History
Publication Date:
21 December 2007 (online)
Abstract
β-Trifluoromethyl β-amino acids and α-trifluoromethyl α-alkyl amines can be easily prepared under Barbier conditions from trifluoromethyl aldimines in moderate to good yields. β-Trifluoromethyl β-amino acids were obtained in good enantioselectivity from the chiral trifluoromethyl aldimine starting material.
Key words
Barbier reaction - Reformatsky - fluoroalkyl amines - amino acids
-
1a
Kukhar VP.Soloshonok VA. Fluorine-Containing Amino Acids: Synthesis and Properties Wiley; New York: 1995. -
1b
Bégué JP.Bonnet-Delpon D. Chimie Bioorganique et Médicinale du Fluor EDP-Sciences/CNRS Editions; Paris: 2006. -
2a
Qiu X.-L.Meng W.-D.Qing F.-L. Tetrahedron 2004, 60: 6711 ; and references cited therein -
2b
Fustero S.Salavert E.Pina B.Ramirez de Arellano C.Fuentes AS.Asensio A. Tetrahedron 2001, 57: 6475 -
2c
Davoli P.Forni A.Franciosi C.Moretti I.Prati F. Tetrahedron: Asymmetry 1999, 10: 2361 -
2d
Abouabdellah A.Bégué J.-P.Bonnet-Delpon D.Nga TTT. J. Org. Chem. 1997, 62: 8826 -
2e
Ojima I.Slater JC. Chirality 1997, 9: 487 -
2f
Ojima I.Slater JC.Pera P.Veith JM.Abouabdellah A.Bégué J.-P.Bernacki RJ. Bioorg. Med. Chem. Lett. 1997, 7: 133 -
2g
Soloshonok VA.Soloshonok IV.Kukhar VP.Svedas VK. J. Org. Chem. 1998, 63: 1878 -
2h
Soloshonok VA.Kirilenko AG.Fokina NA.Shishkina IP.Galushko SV.Kukhar VP.Svedas VK.Kozlova EV. Tetrahedron: Asymmetry 1994, 5: 1119 - 3
Bégué J.-P.Bonnet-Delpon D.Crousse B.Legros J. Chem. Soc. Rev. 2005, 34: 562 -
4a
Huguenot F.Brigaud T. J. Org. Chem. 2006, 71: 2159 -
4b
Takaya J.Kagoshima H.Akiyama T. Org. Lett. 2000, 2: 1577 -
4c
Blond G.Billard T.Langlois BR. J. Org. Chem. 2001, 66: 4826 -
4d
Xu Y.Dolbier WR. J. Org. Chem. 2000, 65: 2134 -
4e
Xu Y.Dolbier WR. Tetrahedron Lett. 1998, 39: 9151 -
4f
Sergeeva NN.Golubev AS.Hennig L.Burger K. Synthesis 2002, 2579 - 5
Bravo P.Fustero S.Guidetti M.Volonterio A.Zanda M. J. Org. Chem. 1999, 64: 8731 -
6a
Ohkura H.Handa M.Katagiri T.Uneyama K. J. Org. Chem. 2000, 67: 2692 -
6b
Fustero S.Pina B.Garcia de la Torre M.Navarro A.Ramirez de Arellano C.Simon A. Org. Lett. 1999, 1: 977 -
7a
Lazzaro F.Crucianelli M.De Angelis F.Frigerio M.Malpezzi L.Volonterio A.Zanda M. Tetrahedron: Asymmetry 2004, 15: 889 -
7b
Gong Y.Kato K. J. Fluorine Chem. 2004, 125: 767 -
8a
Gong Y.Kato K. J. Fluorine Chem. 2001, 111: 77 -
8b
Costerousse G.Teutsch G. Tetrahedron 1986, 42: 2685 - 9
Legros J.Meyer F.Coliboeuf M.Crousse B.Bonnet-Delpon D.Bégué JP. J. Org. Chem. 2003, 68: 6444 -
10a
Nguyen Thi Ngoc T.Magueur G.Ourévitch M.Crousse B.Bégué JP.Bonnet-Delpon D. J. Org. Chem. 2005, 70: 699 -
10b
Gosselin F.Roy A.O’Shea PD.Chen C.-Y.Volante RP. Org. Lett. 2004, 6: 641 -
10c
Lebouvier N.Laroche C.Huguenot F.Brigaud T. Tetrahedron Lett. 2002, 43: 2827 -
10d
Magueur G.Crousse B.Bonnet-Delpon D. Tetrahedron Lett. 2005, 46: 2219 -
11a
Bloch R. Chem. Rev. 1998, 98: 1407 -
11b
Hatano M.Suzuki S.Ishihara K. J. Am. Chem. Soc. 2006, 128: 9998 - 14
Fukuhara K.Okamoto S.Sato F. Org. Lett. 2003, 5: 2145
References and Notes
Addition of EtMgBr (1.3 equiv, 1 N THF) to CF3 aldimine 2 led to a mixture of products [CF3CH(Et)NHBn: 42%; CF3CH2NHBn: 13%; 2: 33%, side products: 13%].
13
Typical Procedure for the Synthesis of 4,4,4-Trifluoro-3-(2-methoxy-1-phenylethylamino)butyric Acid Ethyl Ester (9): The methyl ether of the (R)-phenylglycinol trifluoromethyl aldimine 7 (1 mmol, 231 mg) was dissolved in THF (5 mL) and kept under argon. Ethyl bromoacetate (6 equiv, 6 mmol, 1 g) and granular zinc (5 equiv, 5 mmol, 327 mg) were then introduced, followed by a few drops of TMSCl. After being stirred at reflux for 3 h, the reaction mixture was quenched with a sat. NH4Cl solution (15 mL) and extracted with Et2O (3 × 5 mL). The organic layers were washed with brine (15 mL), dried over MgSO4, and concentrated under reduced pressure. The crude product was purified by chromatography on silica gel (cyclohexane-Et2O, 80:20) to afford a mixture of two diastereomers of 9 (80%, 255 mg).
Major Diastereomer: yellow oil; yield: 69%; [α]D
22 -25.0 (c = 0.20, CHCl3). 1H NMR (200 MHz, CDCl3): δ = 1.28 (t, J = 7.1 Hz, 3 H), 2.10 (br s, 1 H), 2.56 (dd, J = 6.5, 15.7 Hz, 1 H), 2.72 (dd, J = 4.3, 15.8 Hz, 1 H), 3.38 (s, 3 H), 3.40 (dd, J = 5.3, 7.9 Hz, 1 H), 3.52 (m, 1 H), 4.11 (dd, J = 5.5, 7.8 Hz, 2 H), 4.18 (q, J = 7.0 Hz, 2 H), 7.36 (m, 5 H). 13C NMR (50 MHz, CDCl3): δ = 14.1, 34.6, 54.2 (q, J
CF = 29 Hz, CHCF3), 58.7, 60.0, 61.0, 77.8, 125.8 (q, J
CF = 281 Hz, CF3), 127.8, 128.0, 128.5, 139.4, 170.1. 19F NMR (188 MHz, CDCl3):
δ = -76.30 (d, J = 7.6 Hz, CF3). IR: 2984, 1735 cm-1. Minor Diastereomer: yellow oil; yield: 10%; [α]D
22 +12.5 (c = 0.16, CHCl3). 1H NMR (200 MHz, CDCl3): δ = 1.19 (t, J = 7.0 Hz, 3 H), 2.87 (dd, J = 2.6, 15.0 Hz, 1 H), 3.05 (dd, J = 5.6, 14.9 Hz, 1 H), 3.31 (s, 3 H), 3.53 (dd, J = 4.9, 9.8 Hz, 1 H), 3.85 (m, 1 H), 4.03 (t, J = 9.9 Hz, 1 H), 4.14 (q, J = 7.1 Hz, 2 H), 4.53 (dd, J = 5.3, 9.9 Hz, 1 H), 7.27 (m, 5 H). 13C NMR (50 MHz, CDCl3): δ = 13.8, 49.5, 51.5 (q, J
CF =35 Hz, CHCF3), 58.7, 60.0, 61.4, 72.2, 124.1 (q, J
CF = 278.8 Hz, CF3), 127.7, 128.0, 128.6, 135.8, 165.5. 19F NMR (188 MHz, CDCl3): δ = -76.0 (d, J = 5.9 Hz, CF3). IR: 2932, 1768 cm-1.