Subscribe to RSS
DOI: 10.1055/s-2007-1000883
A Practical Synthesis of a Key Chiral Drug Intermediate via Asymmetric Organocatalysis
Publication History
Publication Date:
21 December 2007 (online)
Abstract
The versatility of asymmetric organocatalysis is demonstrated by the practical synthesis of methyl (2R,3S)-3-(4-methoxyphenyl)glycidate, a key intermediate in the synthesis of diltiazem. Methyl (E)-4-methoxycinnamate underwent asymmetric epoxidation using a chiral dioxirane, generated in situ from Yang’s catalyst, to provide the product in both high chemical and optical yields. The crude reaction mixture was purified utilizing a novel and simple apparatus performing lipase-catalyzed transesterification, followed by continuous dissolution and crystallization to give the desired optically pure product and catalyst in excellent yields (74% and 91%, respectively). This protocol has addressed previous scale-up issues and has achieved validity as a process to secure the product and the recovered catalyst in high optical purity. In addition, the best possible syntheses of Yang’s catalyst and methyl (E)-4-methoxycinnamate, both critical for the entire process, were also optimized.
1 Introduction
2 A Key Intermediate for Diltiazem
3 Strategy
4 Synthesis of Yang’s Catalyst
4.1 Through an Intramolecular Ullmann Reaction
4.2 Through Catalytic Cyclization of a Monoglycidyl Ester
4.3 Through Improvement of the Original Method
4.3.1 Salt Resolution of 1,1′-Binaphthalene-3,3′-dicarboxylic Acid
4.3.2 Racemization of the Unwanted Enantiomer and Recycling
4.3.3 Formation of the 11-Membered Ring
5 Synthesis of Methyl (E)-4-Methoxycinnamate
6 Asymmetric Epoxidation of Methyl (E)-4-Methoxycinnamate
7 Separation and Purification of the Product and Yang’s Catalyst
8 Conclusion
Key words
drugs - asymmetric catalysis - epoxidations - biaryls - chiral resolution
-
1a
Berkessel A.Groger H. Asymmetric Organocatalysis Wiley-VCH; Weinheim: 2005. -
1b
Dalko PI.Moisan L. Angew. Chem. Int. Ed. 2004, 43: 5138 -
1c
Lelais G.MacMillan DWC. Aldrichimica Acta 2006, 39: 79 -
1d
Taylor MS.Jacobsen EN. Angew. Chem. Int. Ed. 2006, 45: 1520 -
1e
List B.Yang JW. Science 2006, 313: 1584 -
1f
List B. Chem. Commun. 2006, 819 -
1g
Ooi T.Maruoka K. Angew. Chem. Int. Ed. 2007, 46: 4222 -
2a
Inoue H.Takao S.Kawazu M.Kugita H. Yakugaku Zasshi 1973, 93: 729 -
2b
Nagao T.Sato M.Nakajima H.Kiyomoto A. Chem. Pharm. Bull. 1973, 21: 92 -
2c
Yasue H.Omoto S.Takizawa A.Nagao M. Circ. Res., Suppl. I 1983, 52: 147 -
2d
Abe K.Inoue H.Nagao T. Yakugaku Zasshi 1988, 108: 716 -
3a
Senuma M.Shibazaki M.Nishimoto S.Shibata K.Okamura K.Date T. Chem. Pharm. Bull. 1989, 37: 3204 -
3b
Watson KG.Fung YM.Gredley M.Bird GJ.Jackson WR.Gountzos H.Matthews BR. J. Chem. Soc., Chem. Commun. 1990, 1018 -
3c
Miyata O.Shinada T.Ninomiya I.Naito T. Tetrahedron Lett. 1991, 32: 3519 -
3d
Schwartz A.Madan PB.Mohacsi E.O’Brien JP.Todaro LJ.Coffen DL. J. Org. Chem. 1982, 57: 851 -
3e
Matsumae H.Douno H.Yamada S.Nishida T.Ozaki Y.Shibatani T.Tosa T. J. Ferment. Bioeng. 1995, 79: 28 -
3f
Yamada S.Mori Y.Morimatsu K.Ishizu Y.Ozaki Y.Yoshioka R.Nakatani T.Seko H. J. Org. Chem. 1996, 61: 8586 -
3g
Adger BM.Barkley JV.Bergeron S.Cappi MW.Flowerdew BE.Jackson MP.McCague R.Nugent TC.Roberts SM. J. Chem. Soc., Perkin Trans. 1 1997, 3501 -
3h
Imashiro R.Yamanaka T.Seki M. Tetrahedron: Asymmetry 1999, 10: 2845 - 4
Hashiyama T.Inoue H.Konda M.Takeda M. J. Chem. Soc., Perkin Trans 1 1984, 1725 - 5
Matsumae H.Furui M.Shibatani T. J. Ferment. Bioeng. 1993, 75: 93 -
6a
Takahashi T.Maruoka M.Capo M.Koga K. Chem. Pharm. Bull. 1995, 43: 1821 -
6b
Jacobsen EN.Deng I.Furukawa Y.Martinez IE. Tetrahedron 1994, 50: 4323 -
6c
Nemoto T.Ohshima T.Shibasaki M. J. Am. Chem. Soc. 2001, 123: 9474 -
6d
Wu X.-Y.She X.Shi Y. J. Am. Chem. Soc. 2002, 124: 8792 -
7a
Murray RW. Chem. Rev. 1989, 89: 1187 -
7b
Adams W.Curci R.Edwards JO. Acc. Chem. Res. 1989, 22: 205 -
7c
Denmark SE.Wuz Z. Synlett 1999, 847 -
7d
Frohn M.Shi Y. Synthesis 2000, 1979 -
8a
Yang D.Yip Y.-C.Tang M.-W.Wong M.-K.Zheng K.-K.Cheung J.-H. J. Am. Chem. Soc. 1996, 118: 491 -
8b
Yang D.Wang X.-C.Wong M.-K.Yip Y.-C.Tang M.-W. J. Am. Chem. Soc. 1996, 118: 11311 -
8c
Yang D.Wong M.-K.Yip Y.-C.Wang X.-C.Tang M.-W.Zheng J.-H.Cheung K.-K. J. Am. Chem. Soc. 1998, 120: 5943 -
8d
Yang D. Acc. Chem. Res. 2004, 37: 497 - 9 For an example that demonstrates the importance of C
2 symmetry for designing an effective asymmetric synthesis, see:
Seki M.Baba N.Oda J.Inouye Y. J. Am. Chem. Soc. 1981, 103: 4613 -
10a
Seki M.Furutani T.Hatsuda M.Imashiro R. Tetrahedron Lett. 2000, 41: 2149 -
10b
Furutani T.Hatsuda M.Imashiro R.Seki M. Tetrahedron: Asymmetry 1999, 10: 4763 -
10c
Kuroda T.Imashiro R.Seki M. J. Org. Chem. 2000, 65: 4213 -
10d
Furutani T.Hatsuda M.Shimizu T.Seki M. Biosci., Biotechnol., Biochem. 2001, 65: 180 - 11
Seki M.Yamada S.Kuroda T.Imashiro R.Shimizu T. Synthesis 2000, 1677 - 12
Jacobsen EN.Kakiuchi F.Konsler RG.Larrow JF.Tokunaga N. Tetrahedron Lett. 1997, 38: 773 - 13
Bringmann G.Schoner B.Schupp O.Peters K.Peters E.-M.von Schnering HG. Liebigs Ann. Chem. 1994, 91 - 14
Hatsuda M.Hiramatsu H.Yamada S.Shimizu T.Seki M. J. Org. Chem. 2001, 66: 4437 - 15
Claisen L. Ber. Dtsch. Chem. Ges. 1890, 23: 976 - 16
Hatsuda M.Kuroda T.Seki M. Synth. Commun. 2003, 33: 427 -
17a
Seki M.Furutani T.Imashiro R.Kuroda T.Yamanaka T.Harada N.Arakawa H.Kusama M.Hashiyama T. Tetrahedron Lett. 2001, 42: 8201 -
17b
Furutani T.Imashiro R.Hatsuda M.Seki M. J. Org. Chem. 2002, 67: 4599 -
17c
Imashiro R.Seki M. J. Org. Chem. 2004, 69: 4216 - 18
Matsumoto K.Tomioka K. Tetrahedron Lett. 2002, 43: 631 - 19
Idei A.Matsumae H.Kawai E.Yoshioka R.Shibatani T.Akatsuka H.Omori K. Appl. Microbiol. Biotechnol. 2002, 58: 322 - 20
Zhang TY. Chem. Rev. 2006, 106: 2583 - 21
Thayer A. Chem. Eng. News 2005, Sept. 5: 55