Subscribe to RSS
DOI: 10.1055/s-2007-970787
Organocatalytic Asymmetric Conjugate Nucleophilic Glyoxylation
Publication History
Publication Date:
26 March 2007 (online)
Abstract
Organocatalytic nucleophilic glyoxylation reactions have been developed for the first time in asymmetric Michael additions of aminonitriles to α,β-unsaturated aldehydes employing iminium activation with a diphenylprolinol catalyst. After reduction and TBS protection or conversion into camphanoyl derivatives of the resulting alcohols, the final 3-substituted 2-ketoesters were obtained in acceptable yields over four steps (ee = 83-87%, de = 49-88%). Recrystallisation of the camphanoyl derivatives afforded the pure diastereomers (de ³ 98%)
Key words
organocatalysis - aminonitriles - glyoxylation - iminium activation - umpolung
-
1a
Hanessian S. Total Synthesis of Natural Products: The Chiron Approach Pergamon Press; New York: 1983. -
1b
Nakamura S.Hirata Y.Kurosaki T.Anada M.Kataoka O.Kitagaki S.Hashimoto S. Angew. Chem. Int. Ed. 2003, 42: 5351 -
1c
Rodrigues JAR.Moran PJS.Milagre CDF.Ursini CV. Tetrahedron Lett. 2004, 45: 3579 -
1d
Pollex A.Hiersemann M. Org. Lett. 2005, 7: 5705 -
2a
Dewick PM. Medicinal Natural Products John Wiley and Sons; New York: 1997. p.147 -
2b
Marshall WJ.Bangert SK. Clinical Biochemistry Churchill Livingstone; New York: 1995. p.611 -
3a
Ocain TD.Rich DH. J. Med. Chem. 1992, 35: 451 -
3b
Patel DV.Rielly-Gauvin K.Ryono DE.Free CA.Smith SA.Petrillo EW. J. Med. Chem. 1993, 36: 2431 -
3c
Adang AEP.de Man APA.Vogel GMT.Grootenhuis PDJ.Smit MJ.Peters CAM.Visser A.Rewinkel JBM.van Dinther T.Lucas H.Kelder J.van Aelst S.Meuleman DG.van Boeckel CAA. J. Med. Chem. 2002, 45: 4419 -
4a
Yuan W.Wong C.-H.Haeggström JZ.Wetterholm A.Samuelsson B. J. Am. Chem. Soc. 1992, 114: 6552 -
4b
Yuan W.Munoz B.Wong C.-H.Haeggström JZ.Wetterholm A.Samuelsson B. J. Med. Chem. 1993, 36: 211 - 5
Berzelius JJ. Ann. Phys. 1835, 36: 1 - Reviews:
-
6a
Cooper AJL.Ginos JZ.Meister A. Chem. Rev. 1983, 83: 321 -
6b
Kovacs L. Recl. Trav. Chim. Pays-Bas 1993, 112: 471 -
7a
Enders D.Dyker H.Raabe G. Angew. Chem., Int. Ed. Engl. 1992, 31: 618 -
7b
Enders D.Dyker H.Raabe G. Angew. Chem., Int. Ed. Engl. 1993, 32: 421 -
7c
Enders D.Dyker H.Leusink FR. Chem. Eur. J. 1998, 4: 311 - 8
Tyrell E.Skinner GA.Janes J.Milsom G. Synlett 2002, 1073 -
9a
Abraham L.Körner M.Schwab P.Hiersemann M. Adv. Synth. Catal. 2004, 346: 1281 -
9b
Abraham L.Körner M.Hiersemann M. Tetrahedron Lett. 2004, 45: 3647 -
10a
Asymmetric Organocatalysis
Berkessel A.Gröger H. Wiley-VCH; Weinheim: 2005. -
10b
Dalko PI.Moinsan L. Angew. Chem. Int. Ed. 2004, 43: 5138 -
10c
Seayad J.List B. Org. Biomol. Chem. 2005, 3: 719 - 11
Lelais G.MacMillan DWC. Aldrichimica Acta 2006, 39: 79 -
12a
Paras NA.MacMillan DWC. J. Am. Chem. Soc. 2001, 123: 4370 -
12b
Austin JF.MacMillan DWC. J. Am. Chem. Soc. 2002, 124: 1172 -
12c
Paras NA.MacMillan DWC. J. Am. Chem. Soc. 2002, 124: 7894 -
12d
Brown SP.Goodwin NC.MacMillan DWC. J. Am. Chem. Soc. 2003, 125: 1192 -
13a
Prieto A.Halland N.Jørgensen KA. Org. Lett. 2005, 7: 3897 -
13b
Knudsen KR.Mitchell CET.Ley SV. Chem. Commun. 2006, 66 - 14
Gotoh H.Masui R.Ogino H.Shoji M.Hayashi Y. Angew. Chem. Int. Ed. 2006, 45: 6853 - 15
Enders D.Bonten MH.Raabe G. Angew. Chem., Int. Ed. 2007, 46: 2314 -
16a
Seebach D. Angew. Chem., Int. Ed. Engl. 1969, 8: 639 -
16b
Seebach D. Synthesis 1969, 17 -
17a
Taylor MS.Jacobsen EN. J. Am. Chem. Soc. 2003, 125: 11204 -
17b
Balskus EP.Jacobsen EN. J. Am. Chem. Soc. 2006, 128: 6810 -
17c
Poulsen TB.Alemparte C.Saabe S.Bella M.Jørgensen KA. Angew. Chem. Int. Ed. 2005, 44: 2896 -
17d
Li H.Song J.Liu X.Deng L. J. Am. Chem. Soc. 2005, 127: 8948 -
17e
Wu F.Hong R.Khan J.Liu X.Deng L. Angew. Chem. Int. Ed. 2006, 45: 4301 -
18a
Marigo M.Franzén J.Poulsen TB.Zhuang W.Jørgensen KA. J. Am. Chem. Soc. 2005, 127: 6954 -
18b
Franzén J.Marigo M.Fielenbach D.Wabnitz TC.Kjærsgaard A.Jørgensen KA. J. Am. Chem. Soc. 2005, 127: 18296 -
18c
Hayashi Y.Gotoh H.Hayashi T.Shoji M. Angew. Chem. Int. Ed. 2005, 44: 4212 -
18d
Chi Y.Gellman SH. Org. Lett. 2005, 7: 4253 -
18e Review:
Palomo C.Mielgo A. Angew. Chem. Int. Ed. 2006, 45: 7876 - 19
Enders D.Hüttl MRM.Grondal C.Raabe G. Nature (London) 2006, 441: 861 -
20a
Enders D.Kipphardt H.Gerdes P.Breña-Valle LJ.Bhushan V. Bull. Soc. Chim. Belg. 1988, 97: 691 -
20b
Franzén J.Marigo M.Fielenbach D.Wabnitz TC.Kjaersgaard A.Jørgensen KA. J. Am. Chem. Soc. 2005, 127: 18296 - 21
Enders D.Dyker H.Raabe G.Runsink J. Synlett 1992, 901 -
22a
Bunnage ME.Chernega AN.Davies SG.Goodwin JC. J. Chem. Soc., Perkin Trans. 1 1994, 2373 -
22b
Davies SG.Hughes DG.Nicholson RL.Smith AD.Wright AJ. Org. Biomol. Chem. 2004, 2: 1549 -
24a
Enders D.Lotter H. Nouv. J. Chim. 1984, 8: 747 -
24b
Raabe G.Zobel E.Fleischhauer J.Gerdes P.Mannes D.Müller E.Enders D. Z. Naturforsch., A: Phys. Sci. 1991, 46: 275 -
24c
Enders D.Mannes D.Raabe G. Synlett 1992, 837 -
24d
Enders D.Kirchhoff J.Mannes D.Raabe G. Synthesis 1995, 659 -
24e
Enders D.Kirchhoff J.Lausberg V. Liebigs Ann. 1996, 1361 -
24f
Enders D.Kirchhoff J.Gerdes P.Mannes D.Raabe G.Runsink J.Boche G.Marsch M.Ahlbrecht H.Sommer H. Eur. J. Org. Chem. 1998, 63 -
24g
Enders D.Shilvock JP.Raabe G. J. Chem. Soc., Perkin Trans. 1 1999, 1617 -
24h
Enders D.Shilvock JP. Chem. Soc. Rev. 2000, 29: 359 -
24i
Enders D.Lausberg V.Signore GD.Berner OM. Synthesis 2002, 4: 515 -
24j
Enders D.Moser M. Tetrahedron Lett. 2003, 44: 8479 -
24k
Enders D.Signore GD.Berner OM. Chirality 2003, 15: 510 -
24l
Gröger H. Chem. Rev. 2003, 103: 2795 -
24m
Enders D.Milovanovic M.Voloshina E.Raabe G.Fleischhauer J. Eur. J. Org. Chem. 2005, 1984 -
24n
Enders D.Milovanovic M. Z. Naturforsch., B: Chem. Sci. 2007, 62: 117 -
24o
North M. Introduction of the Cyanide Group by Addition to C=O, In Science of Synthesis Vol. 19:Murahashi S.-I. Georg Thieme Verlag; Stuttgart: 2004. p.285
References and Notes
CCDC 631143 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Center via www.ccdc.cam.ac.uk/data_request/cif.
25All new compounds were fully characterised (IR, NMR, MS, elemental analysis, optical rotation, melting point).
Organocatalytic Asymmetric Nucleophilic Glyoxylation to 8a - Typical Procedure
To a solution of the aminonitrile 1 (840 mg, 4 mmol) in toluene (4.0 mL) were added the aldehyde 3a (280 mg, 0.33 mL, 4 mmol) and the catalyst (S)-2 (293 mg, 20 mol%). The reaction mixture was stirred at r.t. for 2 d, quenched with brine and extracted three times with Et2O (10 mL). The organic layer was dried over MgSO4 and concentrated in vacuo. The crude product 4a was dissolved in anhyd THF (8.0 mL), cooled to 0 °C and NaBH4 (453 mg, 12 mmol) was added. The suspension was slowly treated with MeOH (2 mL), using a syringe pump. After stirring for 1 h, the mixture was quenched with sat. NH4Cl solution, the organic phase separated and the aqueous phase extracted three times with Et2O (10 mL). The combined organic phases were washed with brine and H2O, respectively, dried over MgSO4 and the solvent was evaporated. The crude product 5a was subsequently dissolved in anhyd THF (32 mL) and TBSCl (0.9 g, 6.0 mmol) was added. The mixture was cooled to 0 °C and slowly treated with a solution of imidazole (0.54 g, 8 mmol) in anhyd THF (8.0 mL). After stirring for 15 min, the mixture was quenched with brine and extracted three times with Et2O (10 mL). The combined organic phases were washed with H2O, dried over MgSO4, and the solvent was evaporated. The crude product 6a was dissolved in THF (40 mL) and aq 2 N AgNO3 (2.72 g, 16 mmol) was added. After stirring for 2 h, Et2O (40 mL) was added and the mixture stirred for an additional 30 min. The Ag residues were removed by filtration and washed with Et2O and H2O. The aqueous phase was extracted three times with Et2O (10 mL). The combined organic layers were subsequently washed with brine, dried over MgSO4 and the solvent was evaporated. The crude product was purified by flash chromatography on silica gel (Et2O-n-pentane, 1:10) to yield 8a (480 mg, 38%) as a colourless oil; ee 83% (determined by 1H-shift NMR); [α]D
20 -4.3 (c 0.65, CHCl3). IR (CHCl3): 2933, 2886, 2859, 1724, 1558, 1465, 1370, 1290, 1257, 1168, 1099, 1027, 837, 779 cm-1. 1H NMR (300 MHz, CDCl3, TMS): δ = 0.03 [s, 6 H, Si(CH3)2], 0.88 [s, 9 H, SiC(CH3)3], 1.14 (d, 3 H, J = 7.10 Hz, CHCH
3), 1.55 [s, 9 H, OC(CH3)3], 1.63 (m, 1 H, CH
2CH2O), 1.94 (m, 1 H, CH
2CH2O), 3.32 (m, 1 H, CHCH3), 3.65 (t, 3 H, J = 7.05 Hz, CH2O). 13C NMR (75 MHz, CDCl3): d = -5.42 [Si(CH3)2], 15.24 (CHCH3), 18.32 [SiC(CH3)3], 25.94 [SiC(CH3)3], 27.88 [OC(CH3)3], 34.76 (CH2CH2O), 38.93 (CHCH3), 60.34 (CH2O), 83.67 [OC(CH3)3], 161.28 (CO2
t-Bu), 198.50 (COCH). MS (CI): m/z (%) = 316 (0.7) [M+], 295 (9), 261 (54), 259 (3), 215 (2) [M+ - C5H9O2]. Anal. Calcd for C16H32O4Si: C, 60.72; H, 10.19. Found: C, 60.91; H, 10.08.