Subscribe to RSS
DOI: 10.1055/s-2007-973891
Sequential Alkylation/Heterocyclization of β-(2-Aminophenyl)-α,β-ynones Promoted by Electrogenerated Carbanions: A New Approach to Functionalized 4-Alkylquinolines
Publication History
Publication Date:
13 April 2007 (online)
Abstract
Electrolysis in a divided cell (nitroalkanes or methanol, in the absence of solvent and supporting electrolyte, as catholite) gave functionalized 4-alkylquinolines in moderate to high yields through a sequential alkylative heterocyclization of β-(2-aminophenyl)-α,β-ynones. The sequential alkylative heterocyclization process can be extended to the reaction of β-(2-aminophenyl)-α,β-ynones with 1,3-dicarbonyls by galvanostatic electrolysis of these latter derivatives in a tetraethylammonium tetrafluoroborate-N,N-dimethylformamide solution.
Key words
quinolines - alkynones - electrosynthesis - electrogenerated carbanions - alkylative cyclization
- 1
Bray PG.Ward SA.O" Neill PM. Curr. Top. Microbiol. 2005, 295: 3 -
2a
Zouhiri F.Danet M.Bérnard C.Normand-Bayle M.Mouscadet JF.Leh H.Thomas CM.Mbemba G.d’Angelo J.Desmaële D. Tetrahedron Lett. 2005, 46: 2201 -
2b
Normand-Bayle M.Bérnard C.Zouhiri F.Mouscadet JF.Leh H.Thomas CM.Mbemba G.Desmaële D.d’Angelo J. Bioorg. Med. Chem. Lett. 2005, 15: 4019 - 3
Narender P.Srinivas U.Ravinder M.Anada Rao B.Ramesh C.Harakishore K.Gangadasu B.Murthy USN.Jayathirtha Rao V. Bioorg. Med. Chem. 2006, 14: 4600 - 4
Rossiter S.Péron JM.Whitfield PJ.Jones K. Bioorg. Med. Chem. Lett. 2005, 15: 4806 - 5
Joshi AA.Viswanathan CL. Bioorg. Med. Chem. Lett. 2006, 16: 2613 - 6
Nayyar A.Malde A.Couthinho E.Jain R. Bioorg. Med. Chem. 2006, 14: 7302 - 7
Kiselyov AS.Piatnitsky E.Semenova M.Semenov VV. Bioorg. Med. Chem. Lett. 2006, 16: 602 - 8
Goodell JR.Puig-Basagoiti F.Forshey BM.Shi PY.Ferguson DM. J. Med. Chem. 2006, 49: 2127 - 9
Cappelli A.Pericot Mohr G.Gallelli A.Giuliani G.Anzini M.Vomero S.Fresta M.Porcu P.Maciocco E.Concas A.Biggio G.Donati A. J. Med. Chem. 2003, 46: 3568 -
10a
Jiang J.Hoang M.Young JR.Chaung D.Eid R.Turner C.Lin P.Tong X.Wang J.Tan C.Feighner S.Palyha O.Hreniuk DL.Pan J.Sailer AW.MacNeil DJ.Howard A.Shearman L.Stribling S.Camacho R.Strack A.Van der Ploeg LHT.Goulet MT.DeVita J. Bioorg. Med. Chem. Lett. 2006, 16: 5270 -
10b
Tavares FX.Al-Barazanji KA.Bigham EC.Bishop MJ.Britt CS.Carlton DL.Fedman PL.Goetz AS.Grizzle MK.Guo YC.Handlon AL.Hertzog DL.Ignar DM.Lang DG.Ott RJ.Peat J.Zhou H.-Q. J. Med. Chem. 2006, 49: 7905 - 11
Hu B.Collini M.Unwalla R.Miller C.Singhaus R.Quinte E.Savio D.Halpern A.Basso M.Keith J.Clerin V.Chen L.Resmini C.Liu Q.-Y.Feingold I.Huselton C.Azam F.Farnegardh M.Enroth C.Bonn T.Goos-Nilsson A.Wilhemsson A.Nambi P.Wrobel J. J. Med. Chem. 2006, 49: 6151 -
12a
Tumambac GE.Rosencrance CM.Wolf C. Tetrahedron 2004, 60: 11293 -
12b
Tong H.Wang L.Jing X.Wang F. Macromolecules 2003, 36: 2584 - Selected references:
-
13a
Li AH.Ahmed E.Chen X.Cox M.Crew AP.Dong HQ.Jin MZ.Ma LF.Panicker B.Siu KW.Steing AG.Stolz KM.Tavares PAR.Volk B.Weng QH.Werner D.Mulyihill M. Org. Biomol. Chem. 2007, 5: 61 -
13b
Muscia GC.Bollini JP.Bruno AM.Asís SE. Tetrahedron Lett. 2006, 47: 8811 -
13c
Varala R.Enugula R.Adapa SR. Synthesis 2006, 3825 -
13d
Anguille S.Brunet JJ.Chu NC.Diallo O.Pages C.Vincendeau S. Organometallics 2006, 25: 2943 -
13e
Ichikawa J.Sakoda K.Moriyama H.Wada Y. Synthesis 2006, 1590 -
13f
Savitha G.Perumal PT. Tetrahedron Lett. 2006, 47: 3589 -
13g
Kouznestov VV.Bohorquez ARR.Saavedra LA.Medina RF. Mol. Divers. 2006, 10: 29 -
13h
Janza B.Studer A. Org. Lett. 2006, 8: 1875 -
13i
Jia CS.Wang GW. Lett. Org. Chem. 2006, 3: 289 -
13j
Lin XF.Cui SL.Wang YG. Tetrahedron Lett. 2006, 47: 3127 -
13k
Sivaprasad G.Rajesh R.Perumal PT. Tetrahedron Lett. 2006, 47: 1783 -
13l
Duggineni S.Sawant D.Saha B.Kundu B. Tetrahedron 2006, 62: 3228 -
13m
Chaudhuri MK.Hussain S. J. Chem. Sci. 2006, 118: 199 -
14a
Zolfigol MA.Salehi P.Ghaderi A.Shiri M.Tanbakouchian Z. J. Mol. Catal. A: Chem. 2006, 259: 253 -
14b
Li YS.Wu CL.Huang JL.Su WK. Synth. Commun. 2006, 36: 3065 -
14c
Selvam NP.Saravan C.Muralidharan D.Perumal PTJ. Heterocycl. Chem. 2006, 43: 1379 -
15a
Abbiati G.Arcadi A.Canevari V.Capezzuto L.Rossi E. J. Org. Chem. 2005, 70: 6454 -
15b
Rossi E.Abbiati G.Canevari V.Nava D.Arcadi A. Tetrahedron 2004, 60: 11391 -
15c
Arcadi A.Marinelli F.Rossi E. Tetrahedron 1999, 55: 13233 -
16a
Abbiati G.Arcadi A.Marinelli F.Rossi E. Eur. J. Org. Chem. 2003, 1423 -
16b
Rossi E.Abbiati A.Arcadi A.Marinelli F. Tetrahedron Lett. 2001, 42: 3705 - 17
Abbiati G.Arcadi A.Marinelli F.Rossi E.Verdecchia M. Synlett 2006, 3218 - 18
Arcadi A.Chiarini M.Di Giuseppe S.Marinelli F. Synlett 2003, 203 -
19a
Lund H. In Organic Electrochemistry 4th ed.:Lund H.Hammerich O. Marcel Dekker; New York: 2001. -
19b
Bard AJ.Stratmann M. Encyclopedia of Electrochemistry, Organic Electrochemistry Vol. 8:Schäfer HJ. Wiley-VCH; Weinheim: 2004. -
19c
Torii S. Electroorganic Reduction Synthesis Vol. 1 and 2: Wiley-VCH; Koansha, Tokyo: 2006. - 20
Caruso T.Feroci M.Inesi A.Orsini M.Scettri A.Palombi L. Adv. Synth. Catal. 2006, 348: 1942 -
21a
Suba C.Murat E.Niyazymbetov E.Evans DH. Electrochim. Acta 1997, 42: 2247 -
21b
Samet AV.Niyazymbetov ME.Semenov VV.Laikhter AL.Evans DH. J. Org. Chem. 1996, 61: 8786 -
21c
Monte WT.Baizer MM.Little RD. J. Org. Chem. 1983, 48: 803 - 23
Nielsen AT. In The Chemistry of the Nitro and Nitroso GroupsFeuer H. Interscience; New York: 1970. Part 2. p.372 - 25
Shankar R.Jha AK.Singh US.Hajela K. Tetrahedron Lett. 2006, 47: 3077
References and Notes
β-(2-aminophenyl)-α,β-ynones 2a-d were prepared according to ref. 15c. General procedure for electrochemically promoted sequential alkylative cyclization reaction of nitroalkane 1a-c with β-(2-aminophenyl)-α,β-ynones 2: Pure nitroalkane, (2.0 mL) and TEATFB-DMF solution (0.1 M, 3.0 mL) were added to the cathodic and anodic compartment of the divided cell, respectively. The cell was equipped with a Pt mesh cathode (1.0 cm2) and a Pt spiral anode. The electrolysis was carried out under galvanostatic control (J = 30 mAcm-2, Q = 1.2 Fmol-1 referred to compound 2) at 0 °C. At the end of the electrolysis, the α,β-ynones 2 (0.2 mmol) were added to the cathode compartment and the reaction held at r.t. for the time reported in Table
[1]
. Once the TLC analysis showed the disappearance of 2, the excess of starting nitroalkane 1a-c was removed under vacuum and the residue purified by flash column chromatography to afford pure product 3a-j.
3b: pale yellow oil; 1H NMR (200 MHz, CDCl3): δ = 1.06 (t, J = 7.3 Hz, 3 H), 2.12-2.45 (m, 1 H), 2.34 (s, 6 H), 2.50-2.75 (m, 1 H), 6.22 (dd, J = 9.1, 5.6 Hz, 1 H), 7.05-7.15 (m, 2 H), 7.38 (d, J = 8.3 Hz, 1 H), 7.55-7.85 (m, 3 H), 8.06 (d, J = 8.1 Hz, 1 H), 8.21 (d, J = 7.9 Hz, 1 H); 13C NMR (50.3 MHz, CDCl3): δ = 10.9, 20.3, 21.2, 27.2, 87.3, 120.3, 121.8, 124.3, 125.4, 126.9, 127.6, 129.8, 130.0, 130.7, 131.8, 135.9, 138.9, 139.2, 148.4, 160.0; MS (EI): m/z (%) = 321 (13) [M + H]+, 275 (100).
3c: white solid; mp 84-86 °C; 1H NMR (200 MHz, CDCl3): δ = 1.04 (t, J = 7.3 Hz, 3 H), 2.10-2.35 (m, 1 H), 2.50-2.80 (m, 1 H), 3.79 (s, 3 H), 6.13-6.17 (m, 1 H), 6.96 (d, J = 8.8 Hz, 2 H, part of AA′BB′ system), 7.54 (t, J = 7.1 Hz, 1 H), 7.67 (t, J = 7.2 Hz, 1 H), 7.89 (s, 1 H), 8.05 (d, J = 8.8 Hz, 2 H, part of AA′BB′ system), 7.80-8.25 (m, 2 H); 13C NMR (50.3 MHz, CDCl3): δ = 10.9, 27.3, 55.4, 87.5, 114.4, 116.2, 121.8, 124.4, 125.0, 127.1, 129.0, 130.0, 130.6, 140.0, 148.6, 156.7, 161.3; MS (EI): m/z (%) = 322 (26) [M]+, 276 (100).
3d: pale brown solid; mp 110-112 °C; 1H NMR (200 MHz, CDCl3): δ = 1.05 (t, J = 7.3 Hz, 3 H), 2.12-2.32 (m, 1 H), 2.46-2.75 (m, 1 H), 3.81 (s, 3 H), 5.97 (dd, J = 8.8 Hz, 1 H), 6.93-7.05 (m, 2 H), 7.08-7.20 (m, 1 H), 7.32-7.47 (m, 2 H), 7.87 (dd, J = 7.6, 1.6 Hz, 1 H), 8.19 (s, 1 H); MS (EI): m/z (%) = 359 (25) [M + H]+, 312 (100).
3e: white solid; mp 127-129 °C; 1H NMR (200 MHz, CDCl3): δ = 2.32 (s, 3 H), 2.35 (s, 3 H), 5.90 (s, 2 H), 7.06 (s, 1 H), 7.09 (s, 1 H), 7.37 (d, J = 8.3 Hz, 1 H), 7.57 (s, 1 H), 7.60-7.75 (m, 1 H), 7.70-7.85 (m, 1 H), 7.96 (d, J = 8.3 Hz, 1 H), 8.15-8.35 (m, 1 H); 13C NMR (50.3 MHz, CDCl3): δ = 20.4, 21.2, 76.4, 122.4, 124.7, 125.1, 127.0, 128.0, 129.9, 130.2, 130.5, 131.9, 133.3, 136.1, 139.2, 159.4.
3f: white solid; mp 93-95 °C; 1H NMR (200 MHz, CDCl3): δ = 3.82 (s, 3 H), 5.90 (s, 2 H), 6.99 (d, J = 8.7 Hz, 2 H, part of AA′BB′), 7.50-7.65 (m, 1 H), 7.65-7.80 (m, 1 H), 7.83 (s, 1 H), 7.85-8.00 (m, 1 H), 8.08 (d, J = 8.7 Hz, 2 H, part of AA′BB′), 8.15-8.30 (m, 1 H).
3g: white solid; mp 53-55 °C; 1H NMR (200 MHz, CDCl3): δ = 2.09 (s, 6 H), 2.31 (s, 3 H), 2.35 (s, 3 H), 7.00-7.15 (m, 2 H), 7.30-7.75 (m, 5 H), 8.17 (d, J = 8.3 Hz, 1 H); 13C NMR (50.3 MHz, CDCl3): δ = 20.3, 21.2, 28.2, 89.4, 119.7, 122.7, 123.4, 126.9, 127.2, 129.4, 129.7, 131.2, 131.9, 136.0, 136.9, 138.9, 144.6, 148.7, 159.7; MS (EI): m/z (%) = 321 (6) [M + H]+, 274 (100).
3h: white solid; mp 107-109 °C; 1H NMR (200 MHz, CDCl3): δ = 2.12 (s, 6 H), 3.79 (s, 3 H), 6.96 (d, J = 8.8 Hz, 2 H, part of AA′BB′ system), 7.30-7.45 (m, 1 H), 7.45-7.70 (m, 2 H), 7.79 (s, 1 H), 8.04 (d, J = 8.8 Hz, 2 H, part of AA′BB′ system), 8.10-8.20 (m, 1 H); 13C NMR (50.3 MHz, CDCl3): δ = 28.1, 55.4, 89.6, 114.4, 115.9, 122.7, 123.5, 126.7, 128.9, 129.4, 131.1, 131.6, 145.1, 149.1, 156.4, 161.2; MS (EI): m/z (%) = 322 (5) [M]+, 276 (100).
3i: pale brown solid; mp 82-84 °C; 1H NMR (200 MHz, CDCl3): δ = 2.10 (s, 6 H), 3.83 (s, 3 H), 6.80-7.25 (m, 4 H), 7.30-7.50 (m, 1 H), 7.89 (dd, J = 7.6, 1.7 Hz, 1 H), 8.13 (s, 1 H); MS (EI): m/z (%) = 359 (10) [M + H]+, 312 (100).
3j: white solid; mp 196-198 °C; 1H NMR (200 MHz, CDCl3): δ = 2.20 (s, 6 H), 7.44-7.68 (m, 5 H), 7.66-7.86 (m, 3 H), 7.88-8.03 (m, 2 H), 8.05-8.15 (m, 1 H), 8.36 (d, J = 8.5 Hz, 1 H); 13C NMR (50.3 MHz, CDCl3): δ = 28.3, 89.5, 120.6, 122.8, 125.3, 125.4, 126.2, 127.0, 127.6, 128.1, 128.6, 129.7, 129.8, 130.3, 130.8, 131.3, 134.1, 137.2, 147.4, 158.9; MS (EI): m/z (%) = 341 (13) [M - H]+, 294 (100).
General procedure for electrochemically promoted reaction of dicarbonyl compound 1e-f to β-(2-aminophenyl)-α,β-ynones 2: A solution of dicarbonyl compound 1 (0.20 mmol) in TEATFB-DMF (0.1 M, 2 mL) and a solution of TEATFB-DMF (0.1 M, 3.0 mL) were added to the cathodic and anodic compartment of the divided cell, respectively. The cell was equipped with a Pt mesh cathode (1.0 cm2) and a Pt spiral anode. The electrolysis was carried-out under galvanostatic control (J = 30 mAcm-2, Q = 1.2 Fmol-1 referred to 2) at 0 °C. At the end of electrolysis the α,β-ynones 2 (0.2 mmol) were added to the cathode compartment and the reaction held at r.t. for the time reported in Table
[1]
. The mixture was then poured into NH4Cl sat. soln (50 mL) and extracted with Et2O (× 2). The organic layer, dried over Na2SO4, was evaporated in vacuo and the crude purified by flash column chromatography using hexane-Et2O mixtures to afford pure product 3.
3l: white solid; mp 180-182 °C; 1H NMR (200 MHz, CDCl3): δ = 3.73 (s, 6 H), 3.80 (s, 3 H), 5.40 (s, 1 H), 6.97 (d, J = 8.8 Hz, 2 H, part of AA′BB′ system), 7.40-7.60 (m, 1 H), 7.66 (t, J = 7.3 Hz, 1 H), 7.80-7.95 (m, 2 H), 8.07 (d, J = 8.8 Hz, 2 H, part of AA′BB′ system), 8.20 (d, J = 8.6 Hz, 1 H); 13C NMR (50.3 MHz, CDCl3): δ = 53.2, 53.4, 55.4, 114.3, 119.3, 122.4, 125.3, 126.7, 129.2, 129.8, 130.3, 131.2, 138.9, 148.4, 156.5, 161.2, 167.7; MS (EI): m/z (%) = 307 (100), 292 (35).
3m: white solid; mp 120-122 °C; 1H NMR (200 MHz, CDCl3): δ = 3.68 (s, 3 H), 3.74 (s, 3 H), 3.82 (s, 3 H), 5.20 (s, 1 H), 6.85-7.55 (m, 5 H), 7.87 (dd, J = 7.6, 1.5 Hz, 1 H), 8.10 (s, 1 H); MS (EI): m/z (%) = 251 (100), 208 (44).
3n: pale yellow oil; 1H NMR (200 MHz, CDCl3): δ = 1.00-1.35 (m, 3 H); 1.85-2.25 (m, 4 H), 2.35-2.55 (m, 2 H), 3.95-4.30 (m, 2 H), 7.20-8.05 (m, 11 H), 8.30 (d, J = 8.5 Hz, 1 H); MS (EI): m/z (%) = 409 (100) [M]+, 336 (26).