Subscribe to RSS
DOI: 10.1055/s-2007-991068
Direct Etherification of Alkyl Halides by Sodium Hydride in the Presence of N,N-Dimethylformamide
Publication History
Publication Date:
25 September 2007 (online)
![](https://www.thieme-connect.de/media/synlett/200717/lookinside/thumbnails/10.1055-s-2007-991068-1.jpg)
Abstract
A novel synthetic method for the preparation of various alkyl ethers is described. The reaction between alkyl halides and sodium hydride in the presence of N,N-dimethylformamide afforded the corresponding symmetrical and unsymmetrical ethers in high yields. A reaction mechanism for etherification is also proposed.
Key words
etherification - dimethylformamide - sodium hydride - symmetrical and unsymmetrical ethers - alkyl halides
-
2a
Mitsunobu O. In Comprehensive Organic Synthesis Vol. 6:Trost BM.Fleming I. Pergamon; London: 1991. p.1 -
2b
Baggett N. In Comprehensive Organic Chemistry Vol. 1:Stoddart JF. Pergamon; London: 1979. p.799 - 3
Buckingham J. Dictionary of Natural Products University Press; Cambridge MA: 1994. - For selected reviews for the preparation of ethers, see:
-
4a
Greene TW.Wuts PGM. Protective Groups in Organic Synthesis 3rd ed.: Wiley-VCH; New York: 1999. -
4b
Larock RC. Comprehensive Organic Transformation 2nd ed.: Wiley-VCH; New York: 1999. -
5a
Dermer OC. Chem. Rev. 1934, 14: 385 -
5b
Williamson AW. J. Chem. Soc. 1852, 229 - For selected reviews for Ullmann ether formation, see:
-
6a
Nelson TD.Crouch RD. Org. React. 2004, 63: 265 -
6b
Hassan J.Sevignon M.Gozzi C.Schulz E.Lemaire M. Chem. Rev. 2002, 102: 1359 -
6c
Sawyer JS. Tetrahedron 2000, 56: 5045 -
6d
Theil F. Angew Chem. Int. Ed. 1999, 38: 2345 -
7a
Tan SN.Dryfe RA.Girault HH. Helv. Chim. Acta 1994, 77: 231 -
7b
Alvarez-Builla J.Vaquero JJ.Garcia-Navio JL.Cabello JF.Sunkel C.Fau de Casa-Juana M.Dorrego F.Santos L. Tetrahedron 1990, 46: 967 -
7c
Thoman CJ.Habeeb TD.Huhn M.Korpusik M.Slish DF. J. Org. Chem. 1989, 54: 4476 -
8a
Zolfigol MA.Mohammadpoor-Baltork I.Habibi D.Mirjalili BF.Bamoniri A. Tetrahedron Lett. 2003, 44: 8165 -
8b
Wang S.Guin JA. Chem. Commun. 2000, 2499 - For Pd-mediated Ullmann modification, see:
-
9a
Torraca KE.Huang X.Parrish CA.Buchwald SL. J. Am. Chem. Soc. 2002, 123: 10770 -
9b
Shelby Q.Kataoka N.Mann G.Hartwig J. J. Am. Chem. Soc. 2000, 122: 10718 - For Pd-mediated etherification, see:
-
9c
Miller KJ.Abu-Omar MM. Eur. J. Org. Chem. 2003, 1294 -
9d
Kim H.Lee C. Org. Lett. 2002, 4: 4369 -
9e
Fujii Y.Furugaki H.Tamura E.Yano S.Kita K. Bull. Chem. Soc. Jpn. 2005, 78: 456 -
9f
Bethmont V.Fache F.Lemaire M. Tetrahedron Lett. 1995, 36: 4235 - For Pt-mediated etherification, see:
-
9g
Verzele M.Acke M.Anteunis M. J. Chem. Soc. 1963, 5598 - For Rh-mediated etherification, see:
-
9h
Busch-Petersen J.Corey EJ. Org. Lett. 2000, 2: 1641 - For Zn-mediated etherification, see:
-
9i
Paul S.Gupta M. Tetrahedron Lett. 2004, 45: 8825 - 10
Balsells RE.Frasca AR. Tetrahedron 1982, 38: 2525 -
11a
Emert J.Goldenberg M.Chiu GL.Valeri A. J. Org. Chem. 1977, 42: 2012 -
11b
Traynelis VJ.Hergenrother WL.Hanson HT.Valicenti JA. J. Org. Chem. 1964, 29: 123 -
12a
Denton SM.Wood A. Synlett 1999, 55 -
12b
Khanapure SP.Manna S.Rokach J.Murphy RC.Wheelan P.Powell WS. J. Org. Chem. 1995, 60: 1806 -
12c
Comins DL.Brown JD. J. Org. Chem. 1984, 49: 1078 -
12d
Bouveault L. Bull. Soc. Chim. Fr. 1904, 31: 1306 -
13a
Meth-Cohn O. In Comprehensive Organic Synthesis Vol. 2:Trost BM.Fleming I. Pergamon; London: 1991. p.777-794 -
13b
Vilsmeier A.Haack A. Ber. Dtsch. Chem. Ges. 1927, 60: 119 - 14
Serrano P.Llebaria A.Delgado A. J. Org. Chem. 2005, 70: 7829 - 15
Kim JD.Han G.Zee OP.Jung YH. Tetrahedron Lett. 2003, 44: 733 - 17
Dalton DR.Smith RC.Jones DG. Tetrahedron 2003, 44: 733 -
19a
Heaney F.Fenlon J.O’Mahony C.McArdle P.Cunningham D. Org. Biomol. Chem. 2003, 1: 4302 -
19b
Miller KJ.Abu-Omar MM. Eur. J. Org. Chem. 2003, 1294
References and Notes
These authors contributed equally to this work.
16Compound 3a: 1H NMR (300 MHz, CDCl3): δ = 4.67 (s, 4 H), 7.40-7.51 (m, 10 H). 13C NMR (125 MHz, CDCl3): δ = 72.45, 127.95, 128.09, 128.73, 138.66. 1H NMR and 13C NMR spectra were identical to an authentic sample.
Compound 3b: 1H NMR (300 MHz, CDCl3): δ = 1.71 (br, 1 H), 4.74 (s, 2 H), 7.30-7.43 (m, 5 H). 1H NMR spectrum was identical to that of an authentic sample.
Compound 4a: 1H NMR (300 MHz, CDCl3): δ = 4.27 (dd, J = 6.0, 1.2 Hz, 4 H), 6.39 (dt, J = 15.6, 6.0 Hz, 2 H), 6.70 (d, J = 15.6 Hz, 2 H), 7.30-7.49 (m, 10 H). 13C NMR (125 MHz, CDCl3): δ = 70.99, 126.30, 126.75, 127.93, 128.80, 132.83, 136.99. 1H NMR and 13C NMR spectra were consistent with literature values.19a
Compound 5a: 1H NMR (300 MHz, CDCl3): δ = 1.03 (t, J = 7.5 Hz, 6 H), 2.04-2.14 (m, 4 H), 3.93 (dd, J = 6.3, 1.2 Hz, 4 H), 5.56-5.64 (m, 2 H), 5.72-5.81 (m, 2 H). 13C NMR (125 MHz, CDCl3): δ = 13.53, 25.51, 71.00, 125.57, 136.48.
Compound 6a: 1H NMR (300 MHz, CDCl3): δ = 1.66-1.79 (m, 8 H), 2.69 (t, J = 7.5 Hz, 4 H), 3.47 (t, J = 6.3 Hz, 4 H), 7.22-7.36 (m, 10 H). 13C NMR (125 MHz, CDCl3): δ = 28.33, 29.67, 35.99, 70.98, 125.91, 128.51, 128.67, 142.76.
Compound 6b: 1H NMR (300 MHz, CDCl3): δ = 1.34 (br, 1 H), 1.63-1.79 (m, 4 H), 2.70 (t, J = 7.5 Hz, 2 H), 3.71 (t, J = 6.3 Hz, 2 H), 7.22-7.36 (m, 5 H). 13C NMR (125 MHz, CDCl3): δ = 27.77, 32.58, 35.87, 63.07, 125.99, 128.54, 128.64, 142.55. 1H NMR and 13C NMR spectra were identical to an authentic sample.
Compound 7a: 1H NMR (300 MHz, CDCl3): δ = 1.45 (d, J = 6.6 Hz, 6 H), 1.53 (d, J = 6.6 Hz, 6 H), 4.32 (q, J = 6.6 Hz, 2 H), 4.60 (d, J = 6.6 Hz, 2 H), 7.21-7.42 (m, 20 H). 13C NMR (125 MHz, CDCl3): δ = 23.23, 24.93, 74.67, 74.89, 126.47, 126.56, 127.37, 127.61, 128.47, 128.69, 144.42, 144.50. Products 7a were 1:1 mixture of dl enantiomers and meso compounds, as illustrated in the literature.19b
Compound 7b: 1H NMR (300 MHz, CDCl3): δ = 1.54 (d, J = 6.6 Hz, 3 H), 2.09 (br, 1 H), 4.93 (q, J = 6.6 Hz, 1 H), 7.31-7.41 (m, 5 H). 13C NMR (125 MHz, CDCl3): δ = 25.38, 70.65, 125.62, 127.71, 128.74, 146.06. 1H NMR and 13C NMR spectra were identical to an authentic sample.
Compound 7c: 1H NMR (500 MHz, CDCl3): δ = 5.30 (d, J = 11.0 Hz, 1 H), 5.81 (d, J = 17.5 Hz, 1 H), 6.78 (dd, J = 17.5, 11.0 Hz, 1 H), 7.31-7.49 (m, 5 H). 13C NMR (125 MHz, CDCl3): δ = 114.04, 126.48, 128.06, 128.78, 137.17, 137.87. 1H NMR and 13C NMR spectra were identical to an authentic sample.
DMF-18O was prepared from chloromethylenedimethyl-ammonium chloride and H2O-18O (ca. 10 atom%) according to the literature.17 Mass spectrometric comparison of the parent ion peak ratios (74 and 76) to that of DMF-16O indicated that an enrichment of approx. 7.4% of 18O was present. The mass spectra of dibenzyl ether prepared from DMF-16O and DMF-18O was compared at m/e 221:223 [M + Na] and indicated that an enrichment of approx. 6.4% of 18O was present.