Subscribe to RSS
DOI: 10.1055/s-2008-1032079
Synthesis of β,β′-Diamino Acids from α-Amino Acid Derived β-Lactams
Publication History
Publication Date:
12 February 2008 (online)
Abstract
Ring opening of protected 3-aminoalkyl-substituted azetidin-2-ones with O-, N-, or S-nucleophiles led to β,β′-diaminocarboxylic esters, amides, and thioesters, respectively. The reaction outcome is improved by addition of catalytic amounts of sodium azide. Reduction of the β-lactam amide moiety led to diamino alcohols.
Key words
amino acids - chiral pool - diazo compounds - amino alcohols - lactams
- 1
Hubschwerlen C. In Comprehensive Medicinal Chemistry II Vol. 7:Taylor JB.Triggle DJ. Elsevier; Oxford: 2006. p.479 -
2a
Matthews JL. Synthesis of Peptides and Peptidomimetics, In Methods of Organic Chemistry (Houben-Weyl), Vol. E22c; Goodman M., Felix A., Moroder L., Toniolo C. Thieme; Stuttgart: 2003. p.552 -
2b
Seebach D.Beck AK.Bierbaum DJ. Chem. Biodiversity 2004, 1: 1111 -
2c
Enantioselective Synthesis of β-Amino Acids
2nd ed.:
Juaristi E.Soloshonok VA. Wiley; Hoboken: 2005. - 3
Holton RA.Kim H.-B.Somoza C.Liang F.Biediger RJ.Boatman PD.Shindo M.Smith CC.Kim S.Nadizadeh H.Suzuki Y.Tao C.Vu P.Tang S.Zhang P.Murthi KK.Gentile LN.Liu JH. J. Am. Chem. Soc. 1994, 116: 1599 -
4a
Mukerjee AK.Singh AK. Synthesis 1975, 547 -
4b
Palomo C.Aizpurua JM.Ganbao I. In Enantioselective Synthesis of β-Amino AcidsJuaristi E. Wiley-VCH; New York: 1997. p.279 -
4c
Palomo C.Aizpurua JM.Ganboa I.Oiarbide M. In Enantioselective Synthesis of β-Amino Acids 2nd ed.:Juaristi E.Soloshonok VA. Wiley; Hoboken: 2005. p.477 -
4d
Alcaide B.Almendros P.Aragoncillo C. Chem. Rev. 2007, 107: 4437 -
5a
Podlech J. Synlett 1996, 582 -
5b
Podlech J.Linder MR. J. Org. Chem. 1997, 62: 5873 -
5c
Podlech J.Steurer S. Synthesis 1999, 650 -
5d
Podlech J.Linder MR.Maier TC. In Targets in Heterocyclic Systems - Chemistry and Properties Vol. 4:Attanasi OA.Spinelli D. Società Chimica Italiana; Roma: 2000. p.269 -
5e
Linder MR.Frey WU.Podlech J. J. Chem. Soc., Perkin Trans. 1 2001, 2566 - 6
Ivanov C.Dryanska V. Dokl. Bulg. Akad. Nauk. 1969, 22: 423 ; Chem. Abstr. 1969, 71, 123860 - 7
Chauveau A.Martens T.Bonin M.Micouin L.Husson H.-P. Synthesis 2002, 1885 - 8
Ager DJ. In Handbook of Chiral Chemicals 2nd ed.:Ager D. CRC Press LLC; Boca Raton: 2006. p.11 - 9 See, for example:
Adams H.Bradshaw D.Fenton DE. J. Chem. Soc., Dalton Trans. 2002, 925 - See, for example:
-
10a
Ng JS,Przybyla CA,Mueller RA,Vasquez ML,Getman DP,Freskos JJ,Decrescenzo GA,Bertenshaw DE,Heintz RM,Zhang S,Liu C, andLaneman SA. inventors; WO 9514653. ; Chem. Abstr. 1995, 123, 339376 -
10b
Herold P,Mah R,Stutz S,Tschinke V,Stojanovic A,Marti C,Behnke D,Jotterand N,Quirmbach M, andSchumacher C. inventors; EP 1764099. ; Chem. Abstr. 2007, 146, 330872 - 11
Linder MR.Podlech J. Org. Lett. 2001, 3: 1849 - 12
Wang Y.Liang Y.Jiao L.Du D.-M.Xu J. J. Org. Chem. 2006, 71: 6983 -
13a
Ojima I.Habus I.Zhao M.Zucco M.Park YH.Sun CM.Brigaud T. Tetrahedron 1992, 48: 6985 -
13b
Bell MR.Clemans SD.Oesterlin R. J. Med. Chem. 1970, 13: 389 - 15
Palomo C.Aizpurua JM.Urchegui R.Iturburu M. J. Org. Chem. 1992, 57: 1571 ; see also ref. 13a -
17a
Palomo C.Aizpurua JM.Cuevas C. J. Chem. Soc., Chem. Commun. 1994, 1957 -
17b
Palomo C.Aizpurua JM.Cuevas C.Mielgo A.Galarza R. Tetrahedron Lett. 1995, 36: 9027 - 19
Baldwin JE.Adlington RM.Gollins DW.Schofield CJ. J. Chem. Soc., Chem. Commun. 1990, 720 - 20
Baldwin JE.Adlington RM.Gollins DW.Schofield CJ. Tetrahedron 1990, 46: 4733 -
21a
Speeter ME.Maroney WH. J. Am. Chem. Soc. 1954, 76: 5810 -
21b
Testa E.Fontanella L.Cristiani GF. Justus Liebigs Ann. Chem. 1959, 626: 114 -
21c
Metzger C. Chem. Ber. 1971, 104: 59 -
21d
Bose AK.Banik BK.Mathur C.Wagle DR.Manhas MS. Tetrahedron 2000, 56: 5603 - 22
Buttero PD.Molteni G.Roncoroni M. Tetrahedron Lett. 2006, 47: 2209 - 23
Alcaide B.Almendros P.Cabrero G.Ruiz MP. J. Org. Chem. 2007, 72: 7980 - 24
Amundsen LH.Nelson LS. J. Am. Chem. Soc. 1951, 73: 242
References and Notes
Methyl (2
R
,3
S
,1′
S
)-3-(Benzyloxycarbonylamino)-2-[(
tert
-butyloxycarbonylamino)phenylmethyl]butanoate (10)
Et3N (100 µL, 718 µmol) was added to β-lactam 1a (102 mg, 240 µmol) in anhyd MeOH (7 mL). After stirring for 21 h at r.t. (TLC) the volatile components were removed at reduced pressure and the remnant was purified by chromatography (SiO2, n-hexane-EtOAc, 3:1) yielding methyl ester 10 (109 mg, 239 µmol, 99%) as a colorless wax: [α]D
20 -23.0 (c 1.05, CHCl3). 1H NMR (500 MHz, DMSO-d
6): δ = 1.03 (d, 3
J = 6.7 Hz, 3 H, 4-H), 1.35 [s, 9 H, C(CH3)3], 2.89 (dd, 3
J = 8.3 Hz, 3
J = 6.7 Hz, 1 H, 2-H), 3.49 (s, 3 H, OCH3), 3.54 (ddq, 3
J = 9.1 Hz, 3
J = 7.0 Hz, 1 H, 3-H), 4.85 (dd, 3
J = 9.6, 8.4 Hz, 1 H, 1′-H), 4.96 (d, 2
J = 12.6 Hz, 1 H, OCH
aHbPh), 5.05 (d, 2
J = 12.6 Hz, 1 H, OCHa
H
bPh), 6.87 (d, 3
J = 9.2 Hz, 1 H, NH), 7.13 (d, 3
J = 9.9 Hz, 1 H, 2′-H), 7.22-7.39 (m, 10 H, C6H5). 13C NMR (126 MHz, CDCl3): δ = 19.5 (q, C-4), 28.3 [q, C(CH3)3], 46.5 (d, C-3), 52.0 (q, OCH3), 53.3 (d, C-1′), 56.2 (d, C-2), 66.6 (t, OCH2Ph), 79.8 [s, C(CH3)3], 126.2, 127.7, 128.1, 128.1, 128.5, 128.7 (6 d, 2 C6H5), 136.6, 139.9 (2 s, C6H5 ipso), 155.0 (s, NHCO2
t-Bu), 155.4 (s, NHCO2Bn), 173.1 (s, C-1). IR (DRIFT): ν =3416, 3337 (NH), 3065, 3033, 2978 (CH), 1722 (C=O), 1604, 1587, 1500 (C=C) cm-1. MS (FAB pos.): m/z (%) = 479 (3) [M + Na]+, 457 (4) [M + H]+, 357 (89), 282 (10), 178 (26), 163 (15), 106 (17), 91 (100). HRMS (EI): m/z calcd for 12C25
1H33
14N2
16O6: 457.2339; found: 457.2344.
CCDC 668750 (27), CCDC 668751 (15), and CCDC 668749 (17) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
18
(2
S
,3
S
,1′
R
)-3-(Benzyloxycarbonylamino)-
N
-butyl-2-[(
tert
-butyloxycarbonylamino)-4-chlorphenylmethyl]-butanamide (24)
BuNH2 (23 µL, 233 µmol) and NaN3 (2 mg, 31 µmol) were added to a solution of β-lactam 2b (81 mg, 176 µmol) in anhyd DMF (1 mL) under argon. The mixture was stirred for 42 h at r.t. (TLC), poured into brine (6 mL), and extracted with Et2O (3 × 10 mL). The combined organic layers were dried (MgSO4), concentrated, and purified by chromatography (SiO2, n-hexane-EtOAc, 4:1 → 2:1) yielding 24 (74 mg, 139 µmol, 79%) as a colorless solid: mp 176-178 °C; [α]D
20 +3.9 (c 1.00, CHCl3). 1H NMR (500 MHz, DMSO-d
6): δ = 0.72 (t, 3
J = 7.2 Hz, 3 H, CH2CH
3), 0.86 (dtq, 2
J = 13.7 Hz, 3
J = 7.9, 7.0 Hz, 2 H, CH
2CH3), 0.98 (d, 3
J = 6.5 Hz, 3 H, 4-H), 1.05 (dtt, 2
J = 13.1 Hz, 3
J = 7.8, 6.5 Hz, 2 H, CH
2CH2CH3), 1.36 [s, 9 H, C(CH3)3], 2.57 (dd, 3
J = 10.9 Hz, 3
J = 3.6 Hz, 1 H, 2-H), 2.68 (ddt, 2
J = 13.3 Hz, 3
J = 6.7, 4.9 Hz, 1 H, NHCH
aHb), 2.94 (ddt, 2
J = 13.2 Hz, 3
J = 6.6, 5.9 Hz, 1 H, NHCHa
H
b), 3.86 (ddq, 3
J = 10.8 Hz, 3
J = 8.8, 6.5 Hz, 1 H, 3-H), 4.94 (dd, 3
J = 8.4, 3.5 Hz, 1 H, 1′-H), 4.98 (d, 2
J = 12.4 Hz, 1 H, OCH
aHbPh), 5.02 (d, 2
J = 12.5 Hz, 1 H, OCHa
H
bPh), 6.95 (d, 3
J = 8.4 Hz, 1 H, NHCO2
t-Bu), 7.21 (d, 3
J = 8.5 Hz, 2 H, C6H4Cl: 2′′-H, 6′′-H), 7.30-7.36 (m, 7 H, C6H4Cl: 3′′-H, 5′′-H, Ph), 7.49 (d, 3
J = 8.8 Hz, 1 H, NH), 7.92 (t, 3
J = 5.4 Hz, 1 H, NHCH2). 13C NMR (126 MHz, CDCl3): δ = 13.6 (q, CH2CH3), 18.4 (q, C-4), 19.7 (t, CH2CH3), 28.4 [q, C(CH3)3], 31.1 (t, CH2CH2CH3), 39.0 (t, NHCH2), 47.4 (d, C-3), 52.6 (d, C-1′), 56.2 (d, C-2), 66.6 (t, OCH2Ph), 79.5 [s, C(CH3)3], 127.3 (d, C6H4Cl: C-2′′, C-6′′), 128.0, 128.1, 128.5 (3 d, Ph), 128.5 (d, C6H4Cl: C-3′′, C-5′′), 132.8 (s, C6H4Cl: C-4′′), 136.5 (s, Ph), 140.1 (s, C6H4Cl: C-1′′), 155.5 (s, NHCO2
t-Bu), 155.6 (s, NHCO2Bn), 171.3 (s, C-1). IR (DRIFT): ν = 3344 (NH), 3067, 3035, 2966, 2934, 2874 (CH), 1688, 1645 (C=O, amide I), 1537 (NHCO, amide II) cm-1. MS (FAB pos.): m/z (%) = 554 (30) [M + Na]+, 532 (34) [M + H]+, 476 (24), 432 (100), 238 (77), 180 (12), 165 (15), 140 (12), 91 (79). Anal. Calcd for C28H38ClN3O5 (532.07): C, 63.21; H, 7.20; N, 7.90. Found: C, 63.24; H, 7.18; N, 8.15.