Subscribe to RSS
DOI: 10.1055/s-2008-1067241
Chiral Bispidines
Publication History
Publication Date:
04 September 2008 (online)
Abstract
Chiral bispidines are characterized by a modified 3,7-diazabicyclo[3.3.1]nonane framework. Their structural diversity is broad, reaching from simple bicyclic derivatives with chiral substituents at the nitrogen atoms to sophisticated tetracyclic ones like (-)-sparteine. This review focuses on the stereoselective preparation of chiral bispidines and on their applications in selected asymmetric transformations, thus showing the tremendous progress achieved in both areas over the last 15 years.
1 Introduction
2 Synthesis of Chiral Bispidines
2.1 Classification
2.2 Simple Bispidines with Chiral Substituents at the Nitrogen Atoms
2.3 Chiral Bicyclic Bispidines
2.4 Chiral Tricyclic Bispidines
2.5 Chiral Tetracyclic Bispidines
3 Bispidines in Enantioselective Deprotonation Reactions
3.1 N-Boc-Pyrrolidine
3.1.1 Mechanism
3.1.2 Evaluation of Chiral Diamines
3.2 N-Boc-N-PMP-Benzylamine
3.3 Comparison of (-)-Sparteine with Tricyclic Bispidines
4 Bispidine Transition-Metal Complexes in Asymmetric Synthesis
4.1 Oxidative Kinetic Resolutions
4.2 Enantioselective Additions of Diethylzinc
4.3 Other Applications
5 Concluding Remarks
Key words
chiral bispidines - asymmetric synthesis - bicyclic compounds - chiral auxiliaries - (-)-sparteine
-
1a
Mannich C.Mohs P. Ber. Dtsch. Chem. Ges. 1930, 63: 608 -
1b For the endo,endo-alignment of the phenyl groups in 2, see:
Siener T.Holzgrabe U.Droshin S.Brandt W. J. Chem. Soc., Perkin Trans. 2 1999, 1827 -
2a
Partheil A. Arch. Pharm. (Weinheim) 1894, 232: 161 -
2b
Ing HR. J. Chem. Soc. 1932, 2778 - 3
Marrière E.Rouden J.Tadino V.Lasne M.-C. Org. Lett. 2000, 2: 1121 - 4
Dixon AJ.McGrath MJ.O’Brien P. Org. Synth. 2006, 83: 141 - (-)-Sparteine(5), also known as lupinidine, was first isolated in 1851:
-
5a
Stenhouse J. Ann. Chem. Pharm. 1851, 78: 1 -
5b
Mills EJ. Ann. Chem. Pharm. 1863, 125: 71 - Its structure was elucidated in 1933:
-
5c
Clemo GR.Raper R. J. Chem. Soc. 1933, 644 - 7 The commonly used methods for the
preparation of achiral bispidines are reviewed in:
Jeyaraman R.Avila S. Chem. Rev. 1981, 81: 149 - For earlier investigations on the (-)-sparteine-mediated kinetic resolution of O-allyl carbamates, see:
-
10a
Hoppe D.Zschage O. Angew. Chem., Int. Ed. Engl. 1989, 28: 69 -
10b
Zschage O.Schwark J.-R.Hoppe D. Angew. Chem., Int. Ed. Engl. 1990, 29: 296 - 11
Hoppe D.Hintze F.Tebben P. Angew. Chem., Int. Ed. Engl. 1990, 29: 1422 - 12
Stymiest JL.Dutheuil G.Mahmood A.Aggarwal VK. Angew. Chem. Int. Ed. 2007, 46: 7491 - For a related three-step protocol, see:
-
13a
Beckmann E.Desai V.Hoppe D. Synlett 2004, 2275 -
13b
Ref. 28.
- 14
Kerrick ST.Beak P. J. Am. Chem. Soc. 1991, 113: 9708 - 15
Beak P.Kerrick ST.Wu S.Chu J. J. Am. Chem. Soc. 1994, 116: 3231 - 16 For a review about the configurational
stability of enantio-enriched organolithium compounds,
see:
Basu A.Thayumanavan S. Angew. Chem. Int. Ed. 2002, 41: 716 -
18a
Seppi M.Kalkofen R.Reupohl J.Fröhlich R.Hoppe D. Angew. Chem. Int. Ed. 2004, 43: 1423 - See also:
-
18b
Reuber J.Fröhlich R.Hoppe D. Org. Lett. 2004, 6: 783 -
18c
Reuber J.Fröhlich R.Hoppe D. Eur. J. Org. Chem. 2005, 3017 -
18d
Chedid RB.Fröhlich R.Hoppe D. Org. Lett. 2006, 8: 3061 -
18e
Chedid RB.Fröhlich R.Wibbeling B.Hoppe D. Eur. J. Org. Chem. 2007, 3179 - 19
Hodgson DM.Lee GP. Chem. Commun. 1996, 1015 - 20
Hodgson DM.Lee GP.Marriott RE.Thompson AJ.Wisedale R.Witherington J. J. Chem. Soc., Perkin Trans. 1 1998, 2151 - 21
Johansson MJ.Schwartz LO.Amedjkouh M.Kann NC. Eur. J. Org. Chem. 2004, 1894 - 22
Johansson MJ.Schwartz L.Amedjkouh M.Kann N. Tetrahedron: Asymmetry 2004, 15: 3531 - 23
Metallinos C.Szillat H.Taylor NJ.Snieckus V. Adv. Synth. Catal. 2003, 345: 370 - 24
Thayumanavan S.Basu A.Beak P. J. Am. Chem. Soc. 1997, 119: 8209 - For reviews about the dynamic kinetic and dynamic thermodynamic resolution of configurationally labile organolithium compounds, see:
-
25a
Beak P.Anderson DR.Curtis MD.Laumer JM.Pippel DJ.Weisenburger GA. Acc. Chem. Res. 2000, 33: 715 -
25b
Ref. 113.
- 26 Yields and enantioselectivities
are normally drastically lowered with substoichiometric amounts
of 5. Notable exceptions are the α-lithiation
rearrangement of the meso-epoxide 15
²0 and the deprotonations
of some ferrocenes and phosphine-boranes, see:
Genet C.Canipa SJ.O’Brien P.Taylor S. J. Am. Chem. Soc. 2006, 128: 9336 - 27
McGrath MJ.O’Brien P. J. Am. Chem. Soc. 2005, 127: 16378 - 28
McGrath MJ.O’Brien P. Synthesis 2006, 2233 - 29
McGrath MJ.Bilke JL.O’Brien P. Chem. Commun. 2006, 2607 - 30
Klein S.Marek I.Poisson J.-F.Normant J.-F. J. Am. Chem. Soc. 1995, 117: 8853 - 31
Norsikian S.Marek I.Klein S.Poisson JF.Normant JF. Chem. Eur. J. 1999, 5: 2055 - 32
Denmark SE.Nakajima N.Nicaise OJ.-C. J. Am. Chem. Soc. 1994, 116: 8797 - 33 For the conformational behaviour
and the coordination chemistry of bispidines, see:
Comba P.Kerscher M.Schiek W. Prog. Inorg. Chem. 2007, 55: 613 - 34
Shintani R.Fu GC. Angew. Chem. Int. Ed. 2002, 41: 1057 - 35
Sorger K,Petersen H, andStohrer J. inventors; US Patent 6924386. - For earlier (-)-sparteine-mediated Reformatsky reactions, see:
-
36a Review:
Guetté M.Capillon J.Guetté J.-P. Tetrahedron 1973, 29: 3659 -
36b
Guetté M.Guetté J.-P.Capillon J. Tetrahedron Lett. 1971, 30: 2863 -
36c
Hansen MM.Bartlett PA.Heathcock CH. Organometallics 1987, 6: 2069 - 37
Ferreira EM.Stoltz BM. J. Am. Chem. Soc. 2001, 123: 7725 - 38
Maheswaran H.Prasanth KL.Krishna GG.Ravikumar K.Sridhar B.Kantam ML. Chem. Commun. 2006, 4066 -
39a
Lee Y.-M.Kwon M.-A.Kang SK.Jeong JH.Choi S.-N. Inorg. Chem. Commun. 2003, 6: 197 -
39b
Lopez S.Muravyov I.Pulley SR.Keller SW. Acta Crystallogr., Sect. C 1998, 54: 355 - 40
Zhang Y.Yeung S.-M.Wu H.Heller DP.Wu C.Wulff WD. Org. Lett. 2003, 5: 1813 - Reviews:
-
42a
Hoppe D.Hintze F.Tebben P.Paetow M.Ahrens H.Schwerdtfeger J.Sommerfeld P.Haller J.Guarnieri W.Kolczewksi S.Hense T.Hoppe I. Pure Appl. Chem. 1994, 66: 1479 -
42b
Hoppe D.Hense T. Angew. Chem., Int. Ed. Engl. 1997, 36: 2282 -
42c
Clayden J. Organolithiums: Selectivity for Synthesis Pergamon; New York: 2002. -
42d
Hodgson DM. Topics in Organometallic Chemistry Vol. 5: Springer; Berlin: 2003. -
42e
Gawley RE.Coldham I. In The Chemistry of Organolithium CompoundsRappoport Z.Marek I. Wiley; Chichester: 2004. p.997 -
42f
Hoppe D.Christoph G. In The Chemistry of Organolithium CompoundsRappoport Z.Marek I. Wiley; Chichester: 2004. p.1055 -
42g
Chuzel O.Riant O. In Topics in Organometallic Chemistry Vol. 15:Lemaire M.Mangeney P. Springer; Berlin: 2005. p.59 - 43 (+)-Sparteine (ent-5), also
known as pachycarpine, was first isolated in 1933 from Sophora pachycarpa C. A. Mey:
Orechoff A.Rabinowitch M.Konowalowa R. Ber. Dtsch. Chem. Ges. 1933, 66: 621 - 44
Hermet J.-PR.Porter DW.Dearden MJ.Harrison JR.Koplin T.O’Brien P.Parmene J.Tyurin V.Whitwood AC.Gilday J.Smith NM. Org. Biomol. Chem. 2003, 1: 3977 - 45 For a recent review about the stereoselective
preparation of tricyclic bispidines of type 8 and 131 and their applications in asymmetric
synthesis, see:
O’Brien P. Chem. Commun. 2008, 655 - 46
Chemodanova SV.Potekhin KA.Palyulin VA.Shishkina IN.Dem’yanovich VM.Struchkov YT.Samoshin VV.Zefirov NS. Dokl. Akad. Nauk 1992, 326: 847 ; Chem. Abstr. 1993, 118, 169089 - 47
Zefirov NS.Zyk NV.Vatsadze SZ.Tyurin VS. Bull. Russ. Acad. Sci. USSR, Div. Chem. Sci. (Engl. Transl.) 1992, 41: 2131 ; Izv. Akad. Nauk SSSR, Ser. Khim. 1992, 2687 - 48
Danieli B.Lesma G.Passarella D.Piacenti P.Sacchett i A.Silvani A.Virdis A. Tetrahedron Lett. 2002, 43: 7155 - 49 For an earlier review about the
synthesis of chiral bispidines, see:
Lesma G.Sacchetti A.Silvani A.Danieli B. In New Methods for the Asymmetric Synthesis of Nitrogen HeterocyclesVicario JL.Badía D.Carrillo L. Research Signpost; Kerala: 2005. p.33 - 50 Review:
Stead D.O’Brien P. Tetrahedron 2007, 63: 1885 - 52 For a previous synthesis of 41a, see:
Smissman EE.Ruenitz PC. J. Org. Chem. 1976, 41: 1593 - 53
Spieler J.Huttenloch O.Waldmann H. Eur. J. Org. Chem. 2000, 391 - 54
Lesma G.Danieli B.Passarella D.Sacchetti A.Silvani A. Tetrahedron: Asymmetry 2003, 14: 2453 - 55
Huttenloch O.Laxman E.Waldmann H. Chem. Commun. 2002, 673 - 56
Huttenloch O.Laxman E.Waldmann H. Chem. Eur. J. 2002, 8: 4767 - 57
Huttenloch O.Spieler J.Waldmann H. Chem. Eur. J. 2000, 6: 671 - 58
Lesma G.Danieli B.Passarella D.Sacchetti A.Silvani A. Lett. Org. Chem. 2006, 3: 430 - 60
Gallagher DJ.Wu S.Nikolic NA.Beak P. J. Org. Chem. 1995, 60: 8148 - 61
Lesma G.Cattenati C.Pilati T.Sacchetti A.Silvani A. Tetrahedron: Asymmetry 2007, 18: 659 - 62
Kuehne ME.Matson PA.Bornmann WG. J. Org. Chem. 1991, 56: 513 - 63
Gogoll A.Johansson C.Axén A.Grennberg H. Chem. Eur. J. 2001, 7: 396 - 64
Phuan P.-W.Ianni JC.Kozlowski MC. J. Am. Chem. Soc. 2004, 126: 15473 - 65
Breuning M.Hein D. Tetrahedron: Asymmetry 2007, 18: 1410 -
66a
Davies SG.Walters IAS. J. Chem. Soc., Perkin Trans. 1 1994, 1129 -
66b
Davies SG.Garrido NM.Kruchinin D.Ichihara O.Kotchie LJ.Price PD.Mortimer AJP.Russell AJ.Smith AD. Tetrahedron: Asymmetry 2006, 17: 1793 -
66c
Monfray J.Gelas-Mialhe Y.Gramain J.-C.Remuson R. Tetrahedron Lett. 2003, 44: 5785 - 67
Ciganek E. J. Org. Chem. 1995, 60: 4635 - 68
Chau FHV.Corey EJ. Tetrahedron Lett. 2006, 47: 2581 - 69
Danieli B.Lesma G.Passarella D.Silvani A.Viviani N. Tetrahedron 1999, 55: 11871 - 70 For endo-selective
alkylations of bispidine imides, see:
Blakemore PR.Kilner C.Norcross NR.Astles PC. Org. Lett. 2005, 7: 4721 - 71
Danieli B.Lesma G.Passarella D.Silvani A. J. Org. Chem. 1998, 63: 3492 - Some steps of the synthesis of meso-96 are not described. The overall yield was calculated assuming that the missing steps occurred quantitatively. For the preparation of meso-96 from pyridine-3,5-dicarboxylic acid or dimethyl phthalate, see:
-
72a
Stetter H.Hennig H. Chem. Ber. 1955, 88: 789 -
72b
Ref. 71.
-
72c
Danieli B.Lesma G.Passarella D.Silvani A. Synth. Commun. 1997, 27: 69 - 73
Breuning M.Steiner M. Synthesis 2007, 1702 - 74
Harrison JR.O’Brien P.Porter DW.Smith NM. Chem. Commun. 2001, 1202 - 75
Harrison JR.O’Brien P.Porter DW.Smith NM. J. Chem. Soc., Perkin Trans. 1 1999, 3623 - 76
Monsees A.Laschat S.Kotila S.Fox T.Würthwein E.-U. Liebigs Ann. Chem. 1997, 533 - 77
Scheiber P.Nemes P. Liebigs Ann. Chem. 1994, 1033 - For some bicyclic bispidines prepared from (-)-cytisine (4) by cleavage of the pyridone ring, see:
-
78a
Ivachtchenko AV.Tkachenko SE.Sandulenko YB.Vvedensky VY.Khvat AV. J. Comb. Chem. 2004, 6: 828 -
78b
Ivachtchenko AV.Khvat A.Tkachenko SE.Sandulenko YB.Vvedensky VY. Tetrahedron Lett. 2004, 45: 6733 - 79
Dearden MJ.Firkin CR.Hermet J.-PR.O’Brien P. J. Am. Chem. Soc. 2002, 124: 11870 - 80
Dearden MJ.McGrath MJ.O’Brien P. J. Org. Chem. 2004, 69: 5789 - 81
Genet C.McGrath MJ.O’Brien P. Org. Biomol. Chem. 2006, 4: 1376 - 82
Wilkinson JA.Rossington SB.Ducki S.Leonard J.Hussain N. Tetrahedron 2006, 62: 1833 - 83
Danieli B.Lesma G.Passarella D.Sacchetti A.Silvani A. Tetrahedron Lett. 2005, 46: 7121 - 84
Danieli B.Lesma G.Passarella D.Sacchetti A.Silvani A.Virdis A. Org. Lett. 2004, 6: 493 - 85
Hermet J.-PR.Viterisi A.Wright JM.McGrath MJ.O’Brien P.Whitwood AC.Gilday J. Org. Biomol. Chem. 2007, 5: 3614 - 86 For an alternative route to the
methyl ester derivative of 142, see:
Breuning M.Steiner M. Synthesis 2006, 1386 - 87 (-)-α-Isosparteine
(148), also known as genisteine, is a natural
product, too, and was first isolated in 1951 from Lupinus
caudatus:
Marion L.Turcotte F.Quellet J. Can. J. Chem. 1951, 29: 22 - For syntheses of racemic sparteine (rac-5), see:
-
89a
Leonard NJ.Beyler RE. J. Am. Chem. Soc. 1948, 70: 2298 -
89b
Clemo GR.Raper R.Short WS. J. Chem. Soc. 1949, 663 -
89c
Leonard NJ.Beyler RE. J. Am. Chem. Soc. 1950, 72: 1316 -
89d
Anet ELFJ.Hughes GK.Ritchie E. Aust. J. Sci. Res., A 1950, 3: 635 -
89e
Anet E.Hughes GK.Ritchie E. Nature 1950, 165: 35 -
89f
Van Tamelen EE.Foltz RL. J. Am. Chem. Soc. 1960, 82: 2400 -
89g
Van Tamelen EE.Foltz RL. J. Am. Chem. Soc. 1969, 91: 7372 -
89h
Bohlmann F.Müller H.-J.Schumann D. Chem. Ber. 1973, 106: 3026 -
89i
Takatsu N.Noguchi M.Ohmiya S.Otomasu H. Chem. Pharm. Bull. 1987, 35: 4990 -
89j
Wanner MJ.Koomen G.-J. J. Org. Chem. 1996, 61: 5581 -
89k
Butler T.Fleming I.Gonsior S.Kim B.-H.Sung A.-Y.Woo H.-G. Org. Biomol. Chem. 2005, 3: 1557 -
89l
Sorm F.Keil B. Collect. Czech. Chem. Commun. 1948, 13: 544 -
89m
Carmack M.Douglas B.Martin EW.Suss H. J. Am. Chem. Soc. 1955, 77: 4435 - For syntheses of racemic α-isosparteine (rac-148), see:
-
90a
Refs. 89c,l,m.
-
90b
Tsuda K.Sato Y. Chem. Pharm. Bull. 1954, 2: 190 -
90c
Oinuma H.Dan S.Kakisawa H. J. Chem. Soc., Chem. Commun. 1983, 654 -
90d
Oinuma H.Dan S.Kakisawa H. J. Chem. Soc., Perkin Trans. 1 1990, 2593 - For syntheses of racemic β-isosparteine, see:
-
91a
Refs. 89j,m and 90b.
-
91b
Blakemore PR.Norcross NR.Warriner SL.Astles PC. Heterocycles 2006, 70: 609 - 92
Bellet P. Ann. Pharm. Fr. 1950, 8: 551 -
93a
Clemo GR.Raper R.Tenniswood CRS. J. Chem. Soc. 1931, 429 -
93b
Ebner T.Eichelbaum M.Fischer P.Meese CO. Arch. Pharm. (Weinheim) 1989, 322: 399 - See also:
-
93c
Golebiewski WM.Spenser ID. Can. J. Chem. 1985, 63: 716 -
93d
Bohlmann F.Zeisberg R. Chem. Ber. 1975, 108: 1043 - 95
Galinovsky F.Knoth P.Fischer W. Monatsh. Chem. 1955, 86: 1014 - 96
Okamoto Y.Suzuki K.Kitayama T.Yuki H.Kageyama H.Miki K.Tanaka N.Kasai N. J. Am. Chem. Soc. 1982, 104: 4618 - 97
Smith BT.Wendt JA.Aubé J. Org. Lett. 2002, 4: 2577 -
98a
Uozumi Y.Lee S.-Y.Hayashi T. Tetrahedron Lett. 1992, 33: 7185 -
98b
Hayashi T. Acta Chem. Scand. 1996, 50: 259 -
98c
Weissfloch A.Azerad R. Bioorg. Med. Chem. 1994, 2: 493 - 99
Hermet J.-PR.McGrath MJ.O’Brien P.Porter DW.Gilday J. Chem. Commun. 2004, 1830 - 102
O’Brien P.Wiberg KB.Bailey WF.Hermet J.-PR.McGrath MJ. J. Am. Chem. Soc. 2004, 126: 15480 - 103
Li X.Schenkel LB.Kozlowski MC. Org. Lett. 2000, 2: 875 -
104a
Batsanov AS.Grosjean C.Schuetz T.Whiting A. J. Org. Chem. 2007, 72: 6276 -
104b
Campos KR.Klapars A.Waldman JH.Dormer PG.Chen C. J. Am. Chem. Soc. 2006, 128: 3538 -
104c
Dieter RK.Oba G.Chandupatla KR.Topping CM.Lu K.Watson RT. J. Org. Chem. 2004, 69: 3076 -
104d
Dieter RK.Topping CM.Chandupatla KR.Lu K. J. Am. Chem. Soc. 2001, 123: 5132 -
104e
Dieter RK.Gore VK.Chen N. Org. Lett. 2004, 6: 763 -
104f
Harrison JR.O’Brien P. Synth. Commun. 2001, 31: 1155 -
104g
Nikolic NA.Beak P. Org. Synth. 1997, 74: 23 - 105
Dieter RK.Chen N.Watson RT. Tetrahedron 2005, 61: 3221 - 106 For the dynamic thermodynamic resolution
of N-alkyl-2-lithiopyrrolidines with
(-)-sparteine (5), see:
Coldham I.Dufour S.Haxell TFN.Vennall GP. Tetrahedron 2005, 61: 3205 -
107a
Ashweek NJ.Coldham I.Haxell TFN.Howard S. Org. Biomol. Chem. 2003, 1: 1532 -
107b
Coldham I.Copley RCB.Haxell TFN.Howard S. Org. Lett. 2001, 3: 3799 -
107c
Kise N.Urai T.Yoshida J. Tetrahedron: Asymmetry 1998, 9: 3125 -
107d
Bertini Gross KM.Jun YM.Beak P. J. Org. Chem. 1997, 62: 7679 - 108
Majewski M.Shao J.Nelson K.Nowak P.Irvine NM. Tetrahedron Lett. 1998, 39: 6787 - 109 For an application of the (+)-sparteine
surrogate 8 in natural product synthesis,
see:
Morita Y.Tokuyama H.Fukuyama T. Org. Lett. 2005, 7: 4337 - 110
Bertini Gross KM.Beak P. J. Am. Chem. Soc. 2001, 123: 315 - 111
Gallagher DJ.Beak P. J. Org. Chem. 1995, 60: 7092 - 112
Whisler MC.MacNeil S.Snieckus V.Beak P. Angew. Chem. Int. Ed. 2004, 43: 2206 - 113
Beak P.Basu A.Gallagher DJ.Park YS.Thayumanavan S. Acc. Chem. Res. 1996, 29: 552 - 114
Gallagher DJ.Kerrick ST.Beak P. J. Am. Chem. Soc. 1992, 114: 5872 - For studies on (-)-sparteine-MeLi and (-)-sparteine-PhLi complexes in solution, see:
-
115a
Sott R.Håkansson M.Hilmersson G. Organometallics 2006, 25: 6047 -
115b
Rutherford JL.Hoffmann D.Collum DB. J. Am. Chem. Soc. 2002, 124: 264 - 116
Strohmann C.Strohfeldt K.Schildbach D. J. Am. Chem. Soc. 2003, 125: 13672 - The crystal structures of (-)-sparteine-organolithium complexes can vary widely. For some examples, see:
-
117a
Ref. 116.
-
117b
Strohmann C.Seibel T.Strohfeldt K. Angew. Chem. Int. Ed. 2003, 42: 4531 -
117c
Vestergren M.Eriksson J.Hilmersson G.Håkansson M. J. Organomet. Chem. 2003, 682: 172 -
117d
Strohmann C.Dilsky S.Strohfeldt K. Organometallics 2006, 25: 41 -
117e
Pippel DJ.Weisenburger GA.Wilson SR.Beak P. Angew. Chem. Int. Ed. 1998, 37: 2522 -
117f
Hoppe I.Marsch M.Harms K.Boche G.Hoppe D. Angew. Chem., Int. Ed. Engl. 1995, 34: 2158 - 118 For crystal structures of 8 with MeLi and PhLi, see:
Strohmann C.Strohfeldt K.Schildbach D.McGrath MJ.O’Brien P. Organometallics 2004, 23: 5389 - 119
Beak P.Meyers AI. Acc. Chem. Res. 1986, 19: 356 - For the isomerization barrier of N-Boc-2-lithiopyrrolidine-diamine complexes, see:
-
120a
Yousaf TI.Williams RL.Coldham I.Gawley RE. Chem. Commun. 2007, 97 -
120b
Coldham I.Dufour S.Haxell TFN.Patel JJ.Sanchez-Jimenez G. J. Am. Chem. Soc. 2006, 128: 10943 - 122
Wiberg KB.Bailey WF. J. Am. Chem. Soc. 2001, 123: 8231 - 123
Wiberg KB.Bailey WF. Angew. Chem. Int. Ed. 2000, 39: 2127 -
124a
Würthwein E.-U.Hoppe D. J. Org. Chem. 2005, 70: 4443 -
124b
Würthwein E.-U.Behrens K.Hoppe D. Chem. Eur. J. 1999, 5: 3459 - 132 For a crystal structure of TMCDA
(175a) with t-BuLi,
see:
Strohmann C.Gessner VH. Angew. Chem. Int. Ed. 2007, 46: 8281 - 133
Wiberg KB.Bailey WF. Tetrahedron Lett. 2000, 41: 9365 - 134
Xu Z.Kozlowski MC. J. Org. Chem. 2002, 67: 3072 - 135
Park YS.Boys ML.Beak P. J. Am. Chem. Soc. 1996, 118: 3757 - 136
Park YS.Beak P. Bull. Korean Chem. Soc. 1998, 19: 1253 - For the use of other electrophiles, see:
-
137a
Park YS.Beak P. J. Org. Chem. 1997, 62: 1574 -
137b
Park YS.Weisenburger GA.Beak P. J. Am. Chem. Soc. 1997, 119: 10537 -
137c
Ref. 135.
- 138 For mechanistic studies, see:
Faibish NC.Park YS.Lee S.Beak P. J. Am. Chem. Soc. 1997, 119: 11561 - For applications of (+)-sparteine (ent-5), (-)-α-isosparteine (148), and other diamines in the deprotonation of O-organyl carbamates, see:
-
141a
Helmke H.Hoppe D. Synlett 1995, 978 -
141b
Heinl T.Retzow S.Hoppe D.Fraenkel G.Chow A. Chem. Eur. J. 1999, 5: 3464 -
141c
Ref. 124b.
- 142
Tomooka K.Shimizu H.Inoue T.Shibata H.Nakai T. Chem. Lett. 1999, 759 - 143 It should be noted that the first
asymmetric deprotonation of 179 was done
in the Hoppe group, albeit under non-optimized conditions; see:
Behrens K.Fröhlich R.Meyer O.Hoppe D. Eur. J. Org. Chem. 1998, 2397 - For the deprotonation-rearrangement of related meso-epoxides, see, inter alia:
-
145a
Hodgson DM.Galano J.-M.Christlieb M. Tetrahedron 2003, 59: 9719 -
145b
Hodgson DM.Cameron ID.Christlieb M.Green R.Lee GP.Robinson LA. J. Chem. Soc., Perkin Trans. 1 2001, 2161 -
145c
Hodgson DM.Cameron ID. Org. Lett. 2001, 3: 441 -
145d
Hodgson DM.Robinson LA. Chem. Commun. 1999, 309 - For the deprotonation-alkylation of meso-epoxides, see, for example:
-
146a
Hodgson DM.Gras E. Angew. Chem. Int. Ed. 2002, 41: 2376 -
146b
Hodgson DM.Buxton TJ.Cameron ID.Gras E.Kirton EHM. Org. Biomol. Chem. 2003, 1: 4293 - 147 For (-)-sparteine-mediated
rearrangements of 15 accelerated by addition
of the Lewis acid BF3˙OEt2, see:
Vrancken E.Alexakis A.Mangeney P. Eur. J. Org. Chem. 2005, 1354 - 148
Muci AR.Campos KR.Evans DA. J. Am. Chem. Soc. 1995, 117: 9075 - 149
Park YY.Chang W.-S.Bae S.-K. J. Korean Chem. Soc. 1999, 43: 366 - For further enantioselective deprotonation-electrophilic trapping reactions of phosphines, see:
-
150a
Imamoto T.Watanabe J.Wada Y.Masuda H.Yamada H.Tsuruta H.Matsukawa S.Yamaguchi K. J. Am. Chem. Soc. 1998, 120: 1635 -
150b
Wolfe B.Livinghouse T. J. Org. Chem. 2001, 66: 1514 -
150c
Tang W.Zhang X. Angew. Chem. Int. Ed. 2002, 41: 1612 -
150d
Dolhem F.Johansson MJ.Antonsson T.Kann N. Synlett 2006, 3389 -
150e
Dolhem F.Johansson MJ.Antonsson T.Kann N. J. Comb. Chem. 2007, 9: 477 -
150f
Heath H.Wolfe B.Livinghouse T.Bae SK. Synthesis 2001, 2341 -
150g
Refs. 26 and 27.
- For the (-)-sparteine-mediated dynamic resolution of racemic phosphine boranes, see:
-
151a
Wolfe B.Livinghouse T. J. Am. Chem. Soc. 1998, 120: 5116 -
151b
Ref. 150f.
- 152
Hodgson DM.Lee GP. Tetrahedron: Asymmetry 1997, 8: 2303 -
153a
Bagdanoff JT.Ferreira EM.Stoltz BM. Org. Lett. 2003, 5: 835 -
153b
Jensen DR.Sigman MS. Org. Lett. 2003, 5: 63 -
153c
Mandal SK.Sigman MS. J. Org. Chem. 2003, 68: 7535 -
153d
Bagdanoff JT.Stoltz BM. Angew. Chem. Int. Ed. 2004, 43: 353 -
153e
Caspi DD.Ebner DC.Bagdanoff JT.Stoltz BM. Adv. Synth. Catal. 2004, 346: 185 -
153f
Mueller JA.Cowell A.Chandler BD.Sigman MS. J. Am. Chem. Soc. 2005, 127: 14817 -
153g
Tambar UK.Ebner DC.Stoltz BM. J. Am. Chem. Soc. 2006, 128: 11752 -
153h
Sigman MS.Jensen DR. Acc. Chem. Res. 2006, 39: 221 - For related Pd-sparteine-catalyzed oxidative cyclizations, see:
-
154a
Trend RM.Ramtohul YK.Ferreira EM.Stoltz BM. Angew. Chem. Int. Ed. 2003, 42: 2892 -
154b
Trend RM.Ramtohul YK.Stoltz BM. J. Am. Chem. Soc. 2005, 127: 17778 - 155
Jensen DR.Pugsley JS.Sigman MS. J. Am. Chem. Soc. 2001, 123: 7475 - 156 The selectivity factor k
rel is a measurement for
the ability of a catalyst to differentiate between the enantiomers.
It is defined as k
rel = ln[(1 - C)(1 - ee)]/ln[(1 - C)(1 + ee)],
with ee = enantiomeric excess and C = conversion;
see:
Kagan HB.Fiaud JC. Top. Stereochem. 1988, 18: 249 - 157
Trend RM.Stoltz BM. J. Am. Chem. Soc. 2004, 126: 4482 - For further mechanistic studies, see:
-
158a
Mueller JA.Jensen DR.Sigman MS. J. Am. Chem. Soc. 2002, 124: 8202 -
158b
Mueller JA.Sigman MS. J. Am. Chem. Soc. 2003, 125: 7005 -
158c
Nielsen RJ.Keith JM.Stoltz BM.Goddard WA. J. Am. Chem. Soc. 2004, 126: 7967
References
To the best of our knowledge, the technical procedure for the isolation of (-)-sparteine (5) is not published. All literature available refers to the original isolation procedures (refs. 5a,b), which delivers 5 from Cytisus scoparius in 0.03 mass%.
8According to a Beilstein search, Nov. 2007.
9For a discussion of early applications of (-)-sparteine (5) in asymmetric synthesis, see ref. 42a.
17It should be noted that most of the allyllithium compounds known are configurationally labile at -78 ˚C; see, inter alia, refs. 42a,b,f.
41(-)-Sparteine (5) is commercially available, as the free base or as the sulfate pentahydrate, from, for example, Sigma-Aldrich, ABCR, Acros, and TCI.
51Bispidines with chiral side chains prepared for pharma-ceutical purposes are not included.
59For the preparation of ent-52a, see ref. 61.
88The C 2-symmetric epimer of (-)-sparteine (5) with two exo-annelated piperidine rings, (-)-β-isosparteine, also known as l-spartalupine and pusilline, has not been used as a chiral auxiliary in asymmetric synthesis until now.
94Although of no synthetic importance, (-)-sparteine (5) can be obtained analogously from rac-lupanine (rac-147) by resolution with l-CSA and reduction.9³
100The cyclization of 141 to 142 or ent-142 was later improved to 68% yield by changing the solvent from EtOH to DMF, see Scheme [²7] and ref. 85. Adaptation of this protocol would raise the overall yield from 9% to 14%.
101For a comparison of 8 vs. 5, see refs. 4 and 45.
121The high configurational stability of α-lithio N-Boc-pyrrolidine is also obvious from the following experiment: (S)-tributylstannyl N-Boc-pyrrolidine (96% ee), subjected to a tin-lithium exchange using s-BuLi or s-BuLi-TMEDA, gives, after electrophilic trapping with TMSCl, 12 in 93% ee (15% yield) or 74% ee (36% yield), respectively; see ref. 15.
125The original experiment by Lesma et al.48 was performed with 134 leading to 12.
126Deprotonation of 11 with 1.3 equivalents of 8-s-BuLi and 1.3 equivalents of 5-s-BuLi gave, after trapping with TMSCl, ent-12 in 80% ee, thus indicating that 8 is about ten times more reactive than 5, see ref. 29.
127It should be noted that diminished enantioselectivities in reactions with low conversions might be a consequence of competing deprotonation processes with low stereocontrol that are mediated by other unknown diamine-RLi adducts, which are not of importance if the ‘correct’ diamine-RLi adduct possesses a decent reactivity.
128The original experiment by Kozlowski et al.64 was performed with 78 leading to ent-12.
129Breuning, M.; Steiner, M. unpublished results.
130In should be mentioned that the formation of prelithiation complexes between the ligand 131e, s-BuLi, and other substrates is very probable, since 131e gives acceptable to good yields and enantioselectivities in the deprotonation of the O-alkyl carbamate 179 and the phosphine boranes 17, 181, and 182 (see Section 3.3).
131Amongst others, the Li+ complexes of the following diamines have been used: 5, ent-8, 78, ent-134, 148 (see Figure [³] ), ent-36, ent-53, ent-64 (see Figure [5] ), 166, 175, 176a, 176c, and ent-176b (see Figure [7] ).
139Enantioselective deprotonations of O-alkyl carbamates were widely investigated by Hoppe and co-workers; see refs. 11a-d,f and 124.
140For quantum chemical calculations on the deprotonation of O-alkyl carbamates, see the end of Section 3.1.1 and ref. 124.
144For the use of other electrophiles, see, inter alia, refs. 12 and 13.