References
1a
Mannich C.
Mohs P.
Ber.
Dtsch. Chem. Ges.
1930,
63:
608
1b For the endo,endo-alignment of the phenyl groups in 2, see: Siener T.
Holzgrabe U.
Droshin S.
Brandt W.
J. Chem. Soc., Perkin Trans.
2
1999,
1827
2a
Partheil A.
Arch. Pharm. (Weinheim)
1894,
232:
161
2b
Ing HR.
J.
Chem. Soc.
1932,
2778
3
Marrière E.
Rouden J.
Tadino V.
Lasne M.-C.
Org. Lett.
2000,
2:
1121
4
Dixon AJ.
McGrath MJ.
O’Brien P.
Org. Synth.
2006,
83:
141
(-)-Sparteine(5), also known as lupinidine, was first
isolated in 1851:
5a
Stenhouse J.
Ann.
Chem. Pharm.
1851,
78:
1
5b
Mills EJ.
Ann. Chem. Pharm.
1863,
125:
71
Its structure was elucidated in 1933:
5c
Clemo GR.
Raper R.
J. Chem. Soc.
1933,
644
6 To the best of our knowledge, the technical
procedure for the isolation of (-)-sparteine (5) is not published. All literature available
refers to the original isolation procedures (refs. 5a,b), which
delivers 5 from Cytisus
scoparius in 0.03 mass%.
7 The commonly used methods for the
preparation of achiral bispidines are reviewed in: Jeyaraman R.
Avila S.
Chem. Rev.
1981,
81:
149
8 According to a Beilstein search, Nov.
2007.
9 For a discussion of early applications
of (-)-sparteine (5) in asymmetric
synthesis, see ref. 42a.
For earlier investigations on the
(-)-sparteine-mediated kinetic resolution of O-allyl carbamates, see:
10a
Hoppe D.
Zschage O.
Angew. Chem., Int. Ed. Engl.
1989,
28:
69
10b
Zschage O.
Schwark J.-R.
Hoppe D.
Angew.
Chem., Int. Ed. Engl.
1990,
29:
296
11
Hoppe D.
Hintze F.
Tebben P.
Angew.
Chem., Int. Ed. Engl.
1990,
29:
1422
12
Stymiest JL.
Dutheuil G.
Mahmood A.
Aggarwal VK.
Angew. Chem. Int.
Ed.
2007,
46:
7491
For a related three-step protocol,
see:
13a
Beckmann E.
Desai V.
Hoppe D.
Synlett
2004,
2275
13b Ref. 28.
14
Kerrick ST.
Beak P.
J. Am. Chem. Soc.
1991,
113:
9708
15
Beak P.
Kerrick ST.
Wu S.
Chu J.
J. Am. Chem. Soc.
1994,
116:
3231
16 For a review about the configurational
stability of enantio-enriched organolithium compounds,
see: Basu A.
Thayumanavan S.
Angew.
Chem. Int. Ed.
2002,
41:
716
17 It should be noted that most of the
allyllithium compounds known are configurationally labile at -78 ˚C;
see, inter alia, refs. 42a,b,f.
18a
Seppi M.
Kalkofen R.
Reupohl J.
Fröhlich R.
Hoppe D.
Angew. Chem. Int. Ed.
2004,
43:
1423
See also:
18b
Reuber J.
Fröhlich R.
Hoppe D.
Org.
Lett.
2004,
6:
783
18c
Reuber J.
Fröhlich R.
Hoppe D.
Eur.
J. Org. Chem.
2005,
3017
18d
Chedid RB.
Fröhlich R.
Hoppe D.
Org. Lett.
2006,
8:
3061
18e
Chedid RB.
Fröhlich R.
Wibbeling B.
Hoppe D.
Eur. J. Org.
Chem.
2007,
3179
19
Hodgson DM.
Lee GP.
Chem. Commun.
1996,
1015
20
Hodgson DM.
Lee GP.
Marriott RE.
Thompson AJ.
Wisedale R.
Witherington J.
J.
Chem. Soc., Perkin Trans. 1
1998,
2151
21
Johansson MJ.
Schwartz LO.
Amedjkouh M.
Kann NC.
Eur. J. Org. Chem.
2004,
1894
22
Johansson MJ.
Schwartz L.
Amedjkouh M.
Kann N.
Tetrahedron: Asymmetry
2004,
15:
3531
23
Metallinos C.
Szillat H.
Taylor NJ.
Snieckus V.
Adv. Synth. Catal.
2003,
345:
370
24
Thayumanavan S.
Basu A.
Beak P.
J.
Am. Chem. Soc.
1997,
119:
8209
For reviews about the dynamic kinetic
and dynamic thermodynamic resolution of configurationally labile organolithium
compounds, see:
25a
Beak P.
Anderson DR.
Curtis MD.
Laumer JM.
Pippel DJ.
Weisenburger GA.
Acc.
Chem. Res.
2000,
33:
715
25b Ref. 113.
26 Yields and enantioselectivities
are normally drastically lowered with substoichiometric amounts
of 5. Notable exceptions are the α-lithiation
rearrangement of the meso-epoxide 15
²0 and the deprotonations
of some ferrocenes and phosphine-boranes, see: Genet C.
Canipa SJ.
O’Brien P.
Taylor S.
J. Am. Chem.
Soc.
2006,
128:
9336
27
McGrath MJ.
O’Brien P.
J. Am. Chem. Soc.
2005,
127:
16378
28
McGrath MJ.
O’Brien P.
Synthesis
2006,
2233
29
McGrath MJ.
Bilke JL.
O’Brien P.
Chem. Commun.
2006,
2607
30
Klein S.
Marek I.
Poisson J.-F.
Normant J.-F.
J. Am. Chem. Soc.
1995,
117:
8853
31
Norsikian S.
Marek I.
Klein S.
Poisson JF.
Normant JF.
Chem.
Eur. J.
1999,
5:
2055
32
Denmark SE.
Nakajima N.
Nicaise OJ.-C.
J.
Am. Chem. Soc.
1994,
116:
8797
33 For the conformational behaviour
and the coordination chemistry of bispidines, see: Comba P.
Kerscher M.
Schiek W.
Prog. Inorg. Chem.
2007,
55:
613
34
Shintani R.
Fu GC.
Angew. Chem. Int. Ed.
2002,
41:
1057
35 Sorger K, Petersen H, and Stohrer J. inventors; US
Patent 6924386.
For earlier (-)-sparteine-mediated
Reformatsky reactions, see:
36a Review: Guetté M.
Capillon J.
Guetté J.-P.
Tetrahedron
1973,
29:
3659
36b
Guetté M.
Guetté J.-P.
Capillon J.
Tetrahedron Lett.
1971,
30:
2863
36c
Hansen MM.
Bartlett PA.
Heathcock CH.
Organometallics
1987,
6:
2069
37
Ferreira EM.
Stoltz BM.
J. Am. Chem. Soc.
2001,
123:
7725
38
Maheswaran H.
Prasanth KL.
Krishna GG.
Ravikumar K.
Sridhar B.
Kantam ML.
Chem.
Commun.
2006,
4066
39a
Lee Y.-M.
Kwon M.-A.
Kang SK.
Jeong JH.
Choi S.-N.
Inorg. Chem. Commun.
2003,
6:
197
39b
Lopez S.
Muravyov I.
Pulley SR.
Keller SW.
Acta Crystallogr.,
Sect. C
1998,
54:
355
40
Zhang Y.
Yeung S.-M.
Wu H.
Heller DP.
Wu C.
Wulff WD.
Org. Lett.
2003,
5:
1813
41 (-)-Sparteine (5) is commercially available, as the free
base or as the sulfate pentahydrate, from, for example, Sigma-Aldrich,
ABCR, Acros, and TCI.
Reviews:
42a
Hoppe D.
Hintze F.
Tebben P.
Paetow M.
Ahrens H.
Schwerdtfeger J.
Sommerfeld P.
Haller J.
Guarnieri W.
Kolczewksi S.
Hense T.
Hoppe I.
Pure Appl. Chem.
1994,
66:
1479
42b
Hoppe D.
Hense T.
Angew. Chem., Int. Ed. Engl.
1997,
36:
2282
42c
Clayden J.
Organolithiums: Selectivity for Synthesis
Pergamon;
New York:
2002.
42d
Hodgson DM.
Topics in Organometallic Chemistry
Vol.
5:
Springer;
Berlin:
2003.
42e
Gawley RE.
Coldham I. In The Chemistry of Organolithium Compounds
Rappoport Z.
Marek I.
Wiley;
Chichester:
2004.
p.997
42f
Hoppe D.
Christoph G. In The Chemistry
of Organolithium Compounds
Rappoport Z.
Marek I.
Wiley;
Chichester:
2004.
p.1055
42g
Chuzel O.
Riant O. In
Topics
in Organometallic Chemistry
Vol. 15:
Lemaire M.
Mangeney P.
Springer;
Berlin:
2005.
p.59
43 (+)-Sparteine (ent-5), also
known as pachycarpine, was first isolated in 1933 from Sophora pachycarpa C. A. Mey: Orechoff A.
Rabinowitch M.
Konowalowa R.
Ber. Dtsch. Chem. Ges.
1933,
66:
621
44
Hermet J.-PR.
Porter DW.
Dearden MJ.
Harrison JR.
Koplin T.
O’Brien P.
Parmene J.
Tyurin V.
Whitwood AC.
Gilday J.
Smith NM.
Org. Biomol. Chem.
2003,
1:
3977
45 For a recent review about the stereoselective
preparation of tricyclic bispidines of type 8 and 131 and their applications in asymmetric
synthesis, see: O’Brien P.
Chem.
Commun.
2008,
655
46
Chemodanova SV.
Potekhin KA.
Palyulin VA.
Shishkina IN.
Dem’yanovich VM.
Struchkov YT.
Samoshin VV.
Zefirov NS.
Dokl. Akad. Nauk
1992,
326:
847 ; Chem. Abstr. 1993, 118, 169089
47
Zefirov NS.
Zyk NV.
Vatsadze SZ.
Tyurin VS.
Bull.
Russ. Acad. Sci. USSR, Div. Chem. Sci. (Engl. Transl.)
1992,
41:
2131 ; Izv. Akad. Nauk SSSR,
Ser. Khim. 1992, 2687
48
Danieli B.
Lesma G.
Passarella D.
Piacenti P.
Sacchett i A.
Silvani A.
Virdis A.
Tetrahedron
Lett.
2002,
43:
7155
49 For an earlier review about the
synthesis of chiral bispidines, see: Lesma G.
Sacchetti A.
Silvani A.
Danieli B.
In New Methods
for the Asymmetric Synthesis of Nitrogen Heterocycles
Vicario JL.
Badía D.
Carrillo L.
Research
Signpost;
Kerala:
2005.
p.33
50 Review: Stead D.
O’Brien P.
Tetrahedron
2007,
63:
1885
51 Bispidines with chiral side chains
prepared for pharma-ceutical purposes are not included.
52 For a previous synthesis of 41a, see: Smissman EE.
Ruenitz PC.
J. Org. Chem.
1976,
41:
1593
53
Spieler J.
Huttenloch O.
Waldmann H.
Eur.
J. Org. Chem.
2000,
391
54
Lesma G.
Danieli B.
Passarella D.
Sacchetti A.
Silvani A.
Tetrahedron:
Asymmetry
2003,
14:
2453
55
Huttenloch O.
Laxman E.
Waldmann H.
Chem. Commun.
2002,
673
56
Huttenloch O.
Laxman E.
Waldmann H.
Chem.
Eur. J.
2002,
8:
4767
57
Huttenloch O.
Spieler J.
Waldmann H.
Chem.
Eur. J.
2000,
6:
671
58
Lesma G.
Danieli B.
Passarella D.
Sacchetti A.
Silvani A.
Lett.
Org. Chem.
2006,
3:
430
59 For the preparation of ent-52a, see
ref. 61.
60
Gallagher DJ.
Wu S.
Nikolic NA.
Beak P.
J. Org. Chem.
1995,
60:
8148
61
Lesma G.
Cattenati C.
Pilati T.
Sacchetti A.
Silvani A.
Tetrahedron:
Asymmetry
2007,
18:
659
62
Kuehne ME.
Matson PA.
Bornmann WG.
J. Org. Chem.
1991,
56:
513
63
Gogoll A.
Johansson C.
Axén A.
Grennberg H.
Chem. Eur. J.
2001,
7:
396
64
Phuan P.-W.
Ianni JC.
Kozlowski MC.
J. Am. Chem. Soc.
2004,
126:
15473
65
Breuning M.
Hein D.
Tetrahedron: Asymmetry
2007,
18:
1410
66a
Davies SG.
Walters IAS.
J. Chem. Soc., Perkin Trans. 1
1994,
1129
66b
Davies SG.
Garrido NM.
Kruchinin D.
Ichihara O.
Kotchie LJ.
Price PD.
Mortimer AJP.
Russell AJ.
Smith AD.
Tetrahedron: Asymmetry
2006,
17:
1793
66c
Monfray J.
Gelas-Mialhe Y.
Gramain J.-C.
Remuson R.
Tetrahedron Lett.
2003,
44:
5785
67
Ciganek E.
J.
Org. Chem.
1995,
60:
4635
68
Chau FHV.
Corey EJ.
Tetrahedron
Lett.
2006,
47:
2581
69
Danieli B.
Lesma G.
Passarella D.
Silvani A.
Viviani N.
Tetrahedron
1999,
55:
11871
70 For endo-selective
alkylations of bispidine imides, see: Blakemore PR.
Kilner C.
Norcross NR.
Astles PC.
Org.
Lett.
2005,
7:
4721
71
Danieli B.
Lesma G.
Passarella D.
Silvani A.
J. Org. Chem.
1998,
63:
3492
Some steps of the synthesis of meso-96 are
not described. The overall yield was calculated assuming that the
missing steps occurred quantitatively. For the preparation of meso-96 from
pyridine-3,5-dicarboxylic acid or dimethyl phthalate, see:
72a
Stetter H.
Hennig H.
Chem. Ber.
1955,
88:
789
72b Ref. 71.
72c
Danieli B.
Lesma G.
Passarella D.
Silvani A.
Synth. Commun.
1997,
27:
69
73
Breuning M.
Steiner M.
Synthesis
2007,
1702
74
Harrison JR.
O’Brien P.
Porter DW.
Smith NM.
Chem.
Commun.
2001,
1202
75
Harrison JR.
O’Brien P.
Porter DW.
Smith NM.
J. Chem.
Soc., Perkin Trans. 1
1999,
3623
76
Monsees A.
Laschat S.
Kotila S.
Fox T.
Würthwein
E.-U.
Liebigs
Ann. Chem.
1997,
533
77
Scheiber P.
Nemes P.
Liebigs Ann. Chem.
1994,
1033
For some bicyclic bispidines prepared
from (-)-cytisine (4) by cleavage
of the pyridone ring, see:
78a
Ivachtchenko AV.
Tkachenko SE.
Sandulenko YB.
Vvedensky VY.
Khvat AV.
J. Comb. Chem.
2004,
6:
828
78b
Ivachtchenko AV.
Khvat A.
Tkachenko SE.
Sandulenko YB.
Vvedensky VY.
Tetrahedron Lett.
2004,
45:
6733
79
Dearden MJ.
Firkin CR.
Hermet J.-PR.
O’Brien P.
J.
Am. Chem. Soc.
2002,
124:
11870
80
Dearden MJ.
McGrath MJ.
O’Brien P.
J. Org. Chem.
2004,
69:
5789
81
Genet C.
McGrath MJ.
O’Brien P.
Org. Biomol. Chem.
2006,
4:
1376
82
Wilkinson JA.
Rossington SB.
Ducki S.
Leonard J.
Hussain N.
Tetrahedron
2006,
62:
1833
83
Danieli B.
Lesma G.
Passarella D.
Sacchetti A.
Silvani A.
Tetrahedron
Lett.
2005,
46:
7121
84
Danieli B.
Lesma G.
Passarella D.
Sacchetti A.
Silvani A.
Virdis A.
Org. Lett.
2004,
6:
493
85
Hermet J.-PR.
Viterisi A.
Wright JM.
McGrath MJ.
O’Brien P.
Whitwood AC.
Gilday J.
Org. Biomol. Chem.
2007,
5:
3614
86 For an alternative route to the
methyl ester derivative of 142, see: Breuning M.
Steiner M.
Synthesis
2006,
1386
87 (-)-α-Isosparteine
(148), also known as genisteine, is a natural
product, too, and was first isolated in 1951 from Lupinus
caudatus: Marion L.
Turcotte F.
Quellet J.
Can. J.
Chem.
1951,
29:
22
88 The C
2-symmetric
epimer of (-)-sparteine (5) with
two exo-annelated piperidine rings, (-)-β-isosparteine,
also known as l-spartalupine and pusilline,
has not been used as a chiral auxiliary in asymmetric synthesis
until now.
For syntheses of racemic sparteine
(rac-5), see:
89a
Leonard NJ.
Beyler RE.
J.
Am. Chem. Soc.
1948,
70:
2298
89b
Clemo GR.
Raper R.
Short WS.
J. Chem. Soc.
1949,
663
89c
Leonard NJ.
Beyler RE.
J.
Am. Chem. Soc.
1950,
72:
1316
89d
Anet ELFJ.
Hughes GK.
Ritchie E.
Aust. J. Sci. Res., A
1950,
3:
635
89e
Anet E.
Hughes GK.
Ritchie E.
Nature
1950,
165:
35
89f
Van Tamelen EE.
Foltz RL.
J.
Am. Chem. Soc.
1960,
82:
2400
89g
Van Tamelen EE.
Foltz RL.
J.
Am. Chem. Soc.
1969,
91:
7372
89h
Bohlmann F.
Müller H.-J.
Schumann D.
Chem.
Ber.
1973,
106:
3026
89i
Takatsu N.
Noguchi M.
Ohmiya S.
Otomasu H.
Chem. Pharm. Bull.
1987,
35:
4990
89j
Wanner MJ.
Koomen G.-J.
J. Org. Chem.
1996,
61:
5581
89k
Butler T.
Fleming I.
Gonsior S.
Kim B.-H.
Sung A.-Y.
Woo H.-G.
Org. Biomol. Chem.
2005,
3:
1557
89l
Sorm F.
Keil B.
Collect. Czech. Chem. Commun.
1948,
13:
544
89m
Carmack M.
Douglas B.
Martin EW.
Suss H.
J. Am. Chem. Soc.
1955,
77:
4435
For syntheses of racemic α-isosparteine
(rac-148), see:
90a Refs. 89c,l,m.
90b
Tsuda K.
Sato Y.
Chem. Pharm. Bull.
1954,
2:
190
90c
Oinuma H.
Dan S.
Kakisawa H.
J. Chem.
Soc., Chem. Commun.
1983,
654
90d
Oinuma H.
Dan S.
Kakisawa H.
J.
Chem. Soc., Perkin Trans. 1
1990,
2593
For syntheses of racemic β-isosparteine,
see:
91a Refs. 89j,m and 90b.
91b
Blakemore PR.
Norcross NR.
Warriner SL.
Astles PC.
Heterocycles
2006,
70:
609
92
Bellet P.
Ann.
Pharm. Fr.
1950,
8:
551
93a
Clemo GR.
Raper R.
Tenniswood CRS.
J. Chem. Soc.
1931,
429
93b
Ebner T.
Eichelbaum M.
Fischer P.
Meese CO.
Arch. Pharm. (Weinheim)
1989,
322:
399
See also:
93c
Golebiewski WM.
Spenser ID.
Can.
J. Chem.
1985,
63:
716
93d
Bohlmann F.
Zeisberg R.
Chem. Ber.
1975,
108:
1043
94 Although of no synthetic importance,
(-)-sparteine (5) can be obtained
analogously from rac-lupanine (rac-147) by resolution
with l-CSA and reduction.9³
95
Galinovsky F.
Knoth P.
Fischer W.
Monatsh.
Chem.
1955,
86:
1014
96
Okamoto Y.
Suzuki K.
Kitayama T.
Yuki H.
Kageyama H.
Miki K.
Tanaka N.
Kasai N.
J. Am. Chem. Soc.
1982,
104:
4618
97
Smith BT.
Wendt JA.
Aubé J.
Org.
Lett.
2002,
4:
2577
98a
Uozumi Y.
Lee S.-Y.
Hayashi T.
Tetrahedron Lett.
1992,
33:
7185
98b
Hayashi T.
Acta
Chem. Scand.
1996,
50:
259
98c
Weissfloch A.
Azerad R.
Bioorg. Med. Chem.
1994,
2:
493
99
Hermet J.-PR.
McGrath MJ.
O’Brien P.
Porter DW.
Gilday J.
Chem. Commun.
2004,
1830
100 The cyclization of 141 to 142 or ent-142 was later improved to 68% yield
by changing the solvent from EtOH to DMF, see Scheme
[²7]
and ref. 85. Adaptation
of this protocol would raise the overall yield from 9% to
14%.
101 For a comparison of 8 vs. 5, see refs. 4 and 45.
102
O’Brien P.
Wiberg KB.
Bailey WF.
Hermet J.-PR.
McGrath MJ.
J. Am. Chem. Soc.
2004,
126:
15480
103
Li X.
Schenkel LB.
Kozlowski MC.
Org.
Lett.
2000,
2:
875
104a
Batsanov AS.
Grosjean C.
Schuetz T.
Whiting A.
J. Org.
Chem.
2007,
72:
6276
104b
Campos KR.
Klapars A.
Waldman JH.
Dormer PG.
Chen C.
J. Am. Chem. Soc.
2006,
128:
3538
104c
Dieter RK.
Oba G.
Chandupatla KR.
Topping CM.
Lu K.
Watson RT.
J.
Org. Chem.
2004,
69:
3076
104d
Dieter RK.
Topping CM.
Chandupatla KR.
Lu K.
J.
Am. Chem. Soc.
2001,
123:
5132
104e
Dieter RK.
Gore VK.
Chen N.
Org. Lett.
2004,
6:
763
104f
Harrison JR.
O’Brien P.
Synth. Commun.
2001,
31:
1155
104g
Nikolic NA.
Beak P.
Org. Synth.
1997,
74:
23
105
Dieter RK.
Chen N.
Watson RT.
Tetrahedron
2005,
61:
3221
106 For the dynamic thermodynamic resolution
of N-alkyl-2-lithiopyrrolidines with
(-)-sparteine (5), see: Coldham I.
Dufour S.
Haxell TFN.
Vennall GP.
Tetrahedron
2005,
61:
3205
107a
Ashweek NJ.
Coldham I.
Haxell TFN.
Howard S.
Org. Biomol. Chem.
2003,
1:
1532
107b
Coldham I.
Copley RCB.
Haxell TFN.
Howard S.
Org.
Lett.
2001,
3:
3799
107c
Kise N.
Urai T.
Yoshida J.
Tetrahedron:
Asymmetry
1998,
9:
3125
107d
Bertini Gross KM.
Jun YM.
Beak P.
J. Org. Chem.
1997,
62:
7679
108
Majewski M.
Shao J.
Nelson K.
Nowak P.
Irvine NM.
Tetrahedron
Lett.
1998,
39:
6787
109 For an application of the (+)-sparteine
surrogate 8 in natural product synthesis,
see: Morita Y.
Tokuyama H.
Fukuyama T.
Org. Lett.
2005,
7:
4337
110
Bertini Gross KM.
Beak P.
J.
Am. Chem. Soc.
2001,
123:
315
111
Gallagher DJ.
Beak P.
J. Org. Chem.
1995,
60:
7092
112
Whisler MC.
MacNeil S.
Snieckus V.
Beak P.
Angew. Chem. Int. Ed.
2004,
43:
2206
113
Beak P.
Basu A.
Gallagher DJ.
Park YS.
Thayumanavan S.
Acc.
Chem. Res.
1996,
29:
552
114
Gallagher DJ.
Kerrick ST.
Beak P.
J.
Am. Chem. Soc.
1992,
114:
5872
For studies on (-)-sparteine-MeLi
and (-)-sparteine-PhLi complexes in solution,
see:
115a
Sott R.
Håkansson M.
Hilmersson G.
Organometallics
2006,
25:
6047
115b
Rutherford JL.
Hoffmann D.
Collum DB.
J. Am. Chem. Soc.
2002,
124:
264
116
Strohmann C.
Strohfeldt K.
Schildbach D.
J.
Am. Chem. Soc.
2003,
125:
13672
The crystal structures of (-)-sparteine-organolithium complexes
can vary widely. For some examples, see:
117a Ref. 116.
117b
Strohmann C.
Seibel T.
Strohfeldt K.
Angew.
Chem. Int. Ed.
2003,
42:
4531
117c
Vestergren M.
Eriksson J.
Hilmersson G.
Håkansson M.
J. Organomet. Chem.
2003,
682:
172
117d
Strohmann C.
Dilsky S.
Strohfeldt K.
Organometallics
2006,
25:
41
117e
Pippel DJ.
Weisenburger GA.
Wilson SR.
Beak P.
Angew. Chem.
Int. Ed.
1998,
37:
2522
117f
Hoppe I.
Marsch M.
Harms K.
Boche G.
Hoppe D.
Angew. Chem.,
Int. Ed. Engl.
1995,
34:
2158
118 For crystal structures of 8 with MeLi and PhLi, see: Strohmann C.
Strohfeldt K.
Schildbach D.
McGrath MJ.
O’Brien P.
Organometallics
2004,
23:
5389
119
Beak P.
Meyers AI.
Acc. Chem. Res.
1986,
19:
356
For the isomerization barrier
of N-Boc-2-lithiopyrrolidine-diamine
complexes, see:
120a
Yousaf TI.
Williams RL.
Coldham I.
Gawley RE.
Chem.
Commun.
2007,
97
120b
Coldham I.
Dufour S.
Haxell TFN.
Patel JJ.
Sanchez-Jimenez G.
J. Am. Chem. Soc.
2006,
128:
10943
121 The high configurational stability
of α-lithio N-Boc-pyrrolidine
is also obvious from the following experiment: (S)-tributylstannyl N-Boc-pyrrolidine (96% ee),
subjected to a tin-lithium exchange using s-BuLi
or s-BuLi-TMEDA, gives, after
electrophilic trapping with TMSCl, 12 in
93% ee (15% yield) or 74% ee (36% yield),
respectively; see ref. 15.
122
Wiberg KB.
Bailey WF.
J. Am. Chem. Soc.
2001,
123:
8231
123
Wiberg KB.
Bailey WF.
Angew. Chem. Int.
Ed.
2000,
39:
2127
124a
Würthwein E.-U.
Hoppe D.
J.
Org. Chem.
2005,
70:
4443
124b
Würthwein E.-U.
Behrens K.
Hoppe D.
Chem. Eur. J.
1999,
5:
3459
125 The original experiment by Lesma
et al.48 was performed with 134 leading
to 12.
126 Deprotonation of 11 with
1.3 equivalents of 8-s-BuLi and 1.3 equivalents of 5-s-BuLi
gave, after trapping with TMSCl, ent-12 in 80% ee, thus indicating
that 8 is about ten times more reactive
than 5, see ref. 29.
127 It should be noted that diminished
enantioselectivities in reactions with low conversions might be
a consequence of competing deprotonation processes with low stereocontrol that
are mediated by other unknown diamine-RLi adducts, which
are not of importance if the ‘correct’ diamine-RLi adduct
possesses a decent reactivity.
128 The original experiment by Kozlowski
et al.64 was performed with 78 leading
to ent-12.
129 Breuning, M.; Steiner, M. unpublished results.
130 In should be mentioned that the formation
of prelithiation complexes between the ligand 131e, s-BuLi, and other substrates is very
probable, since 131e gives acceptable to good
yields and enantioselectivities in the deprotonation of the O-alkyl carbamate 179 and
the phosphine boranes 17, 181,
and 182 (see Section 3.3).
131 Amongst others, the Li+ complexes
of the following diamines have been used: 5, ent-8, 78, ent-134, 148 (see Figure
[³]
), ent-36, ent-53, ent-64 (see Figure
[5]
), 166, 175, 176a, 176c, and ent-176b (see Figure
[7]
).
132 For a crystal structure of TMCDA
(175a) with t-BuLi,
see: Strohmann C.
Gessner VH.
Angew. Chem. Int. Ed.
2007,
46:
8281
133
Wiberg KB.
Bailey WF.
Tetrahedron Lett.
2000,
41:
9365
134
Xu Z.
Kozlowski MC.
J. Org. Chem.
2002,
67:
3072
135
Park YS.
Boys ML.
Beak P.
J.
Am. Chem. Soc.
1996,
118:
3757
136
Park YS.
Beak P.
Bull. Korean Chem. Soc.
1998,
19:
1253
For the use of other electrophiles,
see:
137a
Park YS.
Beak P.
J. Org. Chem.
1997,
62:
1574
137b
Park YS.
Weisenburger GA.
Beak P.
J. Am. Chem. Soc.
1997,
119:
10537
137c Ref. 135.
138 For mechanistic studies, see: Faibish NC.
Park YS.
Lee S.
Beak P.
J.
Am. Chem. Soc.
1997,
119:
11561
139 Enantioselective deprotonations of O-alkyl carbamates were widely investigated
by Hoppe and co-workers; see refs. 11a-d,f and 124.
140 For quantum chemical calculations
on the deprotonation of O-alkyl carbamates,
see the end of Section 3.1.1 and ref. 124.
For applications of (+)-sparteine
(ent-5), (-)-α-isosparteine (148), and other diamines in the deprotonation
of O-organyl carbamates, see:
141a
Helmke H.
Hoppe D.
Synlett
1995,
978
141b
Heinl T.
Retzow S.
Hoppe D.
Fraenkel G.
Chow A.
Chem. Eur.
J.
1999,
5:
3464
141c Ref. 124b.
142
Tomooka K.
Shimizu H.
Inoue T.
Shibata H.
Nakai T.
Chem.
Lett.
1999,
759
143 It should be noted that the first
asymmetric deprotonation of 179 was done
in the Hoppe group, albeit under non-optimized conditions; see: Behrens K.
Fröhlich R.
Meyer O.
Hoppe D.
Eur.
J. Org. Chem.
1998,
2397
144 For the use of other electrophiles,
see, inter alia, refs. 12 and 13.
For the deprotonation-rearrangement
of related meso-epoxides, see, inter alia:
145a
Hodgson DM.
Galano J.-M.
Christlieb M.
Tetrahedron
2003,
59:
9719
145b
Hodgson DM.
Cameron ID.
Christlieb M.
Green R.
Lee GP.
Robinson LA.
J.
Chem. Soc., Perkin Trans. 1
2001,
2161
145c
Hodgson DM.
Cameron ID.
Org.
Lett.
2001,
3:
441
145d
Hodgson DM.
Robinson LA.
Chem.
Commun.
1999,
309
For the deprotonation-alkylation
of meso-epoxides, see, for example:
146a
Hodgson DM.
Gras E.
Angew. Chem.
Int. Ed.
2002,
41:
2376
146b
Hodgson DM.
Buxton TJ.
Cameron ID.
Gras E.
Kirton EHM.
Org. Biomol. Chem.
2003,
1:
4293
147 For (-)-sparteine-mediated
rearrangements of 15 accelerated by addition
of the Lewis acid BF3˙OEt2, see: Vrancken E.
Alexakis A.
Mangeney P.
Eur. J. Org. Chem.
2005,
1354
148
Muci AR.
Campos KR.
Evans DA.
J. Am. Chem. Soc.
1995,
117:
9075
149
Park YY.
Chang W.-S.
Bae S.-K.
J.
Korean Chem. Soc.
1999,
43:
366
For further enantioselective deprotonation-electrophilic trapping
reactions of phosphines, see:
150a
Imamoto T.
Watanabe J.
Wada Y.
Masuda H.
Yamada H.
Tsuruta H.
Matsukawa S.
Yamaguchi K.
J. Am. Chem. Soc.
1998,
120:
1635
150b
Wolfe B.
Livinghouse T.
J. Org. Chem.
2001,
66:
1514
150c
Tang W.
Zhang X.
Angew. Chem. Int. Ed.
2002,
41:
1612
150d
Dolhem F.
Johansson MJ.
Antonsson T.
Kann N.
Synlett
2006,
3389
150e
Dolhem F.
Johansson MJ.
Antonsson T.
Kann N.
J. Comb. Chem.
2007,
9:
477
150f
Heath H.
Wolfe B.
Livinghouse T.
Bae SK.
Synthesis
2001,
2341
150g Refs. 26 and 27.
For the (-)-sparteine-mediated
dynamic resolution of racemic phosphine boranes, see:
151a
Wolfe B.
Livinghouse T.
J. Am. Chem. Soc.
1998,
120:
5116
151b Ref. 150f.
152
Hodgson DM.
Lee GP.
Tetrahedron: Asymmetry
1997,
8:
2303
153a
Bagdanoff JT.
Ferreira EM.
Stoltz BM.
Org.
Lett.
2003,
5:
835
153b
Jensen DR.
Sigman MS.
Org.
Lett.
2003,
5:
63
153c
Mandal SK.
Sigman MS.
J.
Org. Chem.
2003,
68:
7535
153d
Bagdanoff JT.
Stoltz BM.
Angew. Chem.
Int. Ed.
2004,
43:
353
153e
Caspi DD.
Ebner DC.
Bagdanoff JT.
Stoltz BM.
Adv.
Synth. Catal.
2004,
346:
185
153f
Mueller JA.
Cowell A.
Chandler BD.
Sigman MS.
J.
Am. Chem. Soc.
2005,
127:
14817
153g
Tambar UK.
Ebner DC.
Stoltz BM.
J. Am. Chem. Soc.
2006,
128:
11752
153h
Sigman MS.
Jensen DR.
Acc.
Chem. Res.
2006,
39:
221
For related Pd-sparteine-catalyzed
oxidative cyclizations, see:
154a
Trend RM.
Ramtohul YK.
Ferreira EM.
Stoltz BM.
Angew.
Chem. Int. Ed.
2003,
42:
2892
154b
Trend RM.
Ramtohul YK.
Stoltz BM.
J. Am. Chem. Soc.
2005,
127:
17778
155
Jensen DR.
Pugsley JS.
Sigman MS.
J. Am. Chem. Soc.
2001,
123:
7475
156 The selectivity factor k
rel is a measurement for
the ability of a catalyst to differentiate between the enantiomers.
It is defined as k
rel = ln[(1 - C)(1 - ee)]/ln[(1 - C)(1 + ee)],
with ee = enantiomeric excess and C = conversion;
see: Kagan HB.
Fiaud JC.
Top. Stereochem.
1988,
18:
249
157
Trend RM.
Stoltz BM.
J. Am. Chem. Soc.
2004,
126:
4482
For further mechanistic studies,
see:
158a
Mueller JA.
Jensen DR.
Sigman MS.
J. Am. Chem. Soc.
2002,
124:
8202
158b
Mueller JA.
Sigman MS.
J.
Am. Chem. Soc.
2003,
125:
7005
158c
Nielsen RJ.
Keith JM.
Stoltz BM.
Goddard WA.
J.
Am. Chem. Soc.
2004,
126:
7967