Subscribe to RSS
DOI: 10.1055/s-2008-1072587
Samarium Diiodide as an Efficient Catalyst for the Conversion of N-Acyloxazolidinones into Esters
Publication History
Publication Date:
16 April 2008 (online)
Abstract
The transformation of N-acyloxazolidinones into esters is readily performed using catalytic amounts of samarium diiodide in tetrahydrofuran at room temperature. This method allows the isolation of various esters without racemization in the case of scalemic substrates and the recovery of oxazolidinones in good yields.
Key words
samarium diiodide - catalysis - deprotection - N-acyloxazolidinones - esters
- For reviews on chiral oxazolidinones as auxiliaries, see:
-
1a
Ager DJ.Prakash I.Schaad DR. Chem. Rev. 1996, 96: 835 -
1b
Ager DJ.Prakash I.Schaad DR. Aldrichimica Acta 1997, 30: 3 -
1c
Evans DA. Aldrichimica Acta 1982, 15: 23 -
1d
Sibi M. Aldrichimica Acta 1999, 32: 93 - For applications of N-acyloxazolidinone in Diels-Alder or Michael reactions, see:
-
2a
Narasaka K.Inoue M.Okada N. Chem. Lett. 1986, 1109 -
2b
Corey EJ.Imai N.Zhang H.-Y. J. Am. Chem. Soc. 1991, 113: 728 -
2c
Evans DA.Chapman KT.Bisaha J. J. Am. Chem. Soc. 1988, 110: 1238 -
2d
Evans DA.Miller SJ.Leckta T.von Matt P. J. Am. Chem. Soc. 1999, 121: 7559 -
2e
Evans DA.Willis MC.Johnston JN. Org. Lett. 1999, 1: 865 -
2f
Sibi MP.Manyem S.Palencia H. J. Am. Chem. Soc. 2006, 128: 13660 -
2g
Li K.Phua PH.Hii KK. Tetrahedron 2005, 61: 6237 -
2h
Hamashima Y.Somei H.Shimura Y.Tamura T.Sodeoka M. Org. Lett. 2004, 6: 1861 -
2i
Zhuang W.Hazell RG.Jørgensen KA. Chem. Commun. 2001, 1240 - For endocyclic cleavage of N-acyloxazolidinones, see:
-
3a
Evans DA.Britton TC.Ellman JA. Tetrahedron Lett. 1987, 28: 6141 -
3b
Davies SG.Hermann GJ.Sweet MJ.Smith AD. Chem. Commun. 2004, 1128 -
3c
Kanomata N.Maruyama S.Tomono K.Anada S. Tetrahedron Lett. 2003, 44: 3599 - For exocyclic reductive cleavage of N-acyloxazolidinones, see:
-
4a
Evans DA.Ennis MD.Mathre DR. J. Am. Chem. Soc. 1982, 104: 1737 -
4b
Barnett CJ.Wilson TM.Evans DA.Somers TC. Tetrahedron Lett. 1997, 38: 735 -
4c
Prashad M.Har D.Kim H.-Y.Repic O. Tetrahedron Lett. 1998, 39: 7067 -
5a
Evans DA.Morrissey MM.Dorow RL. J. Am. Chem. Soc. 1985, 107: 4346 -
5b
Evans DA.Britton TC.Dorow RL.Dellaria JF. J. Am. Chem. Soc. 1986, 108: 6395 -
5c
Hintermann T.Seebach D. Helv. Chim. Acta 1998, 81: 2093 - 6
Tomioka K.Muraoka A.Kanai M. J. Org. Chem. 1995, 60: 6188 - 7
Gothelf KV.Hazell RG.Jørgensen KA. J. Org. Chem. 1996, 61: 346 - 8
Evans DA.Coleman PJ.Dias LC. Angew. Chem., Int. Ed. Engl. 1997, 36: 2738 - 9
Fukusawa S.Hongo Y. Tetrahedron Lett. 1998, 39: 3521 - 10
Orita A.Nagano Y.Hirano J.Otera J. Synlett 2001, 637 -
11a
Collin J.Giuseppone N.Van de Weghe P. Coord. Chem. Rev. 1998, 178-180: 117 -
11b
Giuseppone N.Van de Weghe P.Mellah M.Collin J. Tetrahedron 1998, 54: 13129 -
11c
Van de Weghe P.Collin J. Tetrahedron Lett. 1994, 35: 2545 -
11d
Giuseppone N.Collin J. Tetrahedron 2001, 57: 8989 -
11e
Jaber N.Assié M.Fiaud J.-C.Collin J. Tetrahedron 2004, 60: 3075 - 12
Reboule I.Gil R.Collin J. Tetrahedron Lett. 2005, 46: 7761 -
13a
Reboule I.Gil R.Collin J. Tetrahedron: Asymmetry 2005, 16: 3881 -
13b
Reboule I.Gil R.Collin J. Eur. J. Org. Chem. 2008, 532 - 15
Lindsay KB.Ferrando F.Christensen KL.Overgaard J.Roca T.Bennasar M.-L.Skrydstrup T. J. Org. Chem. 2007, 72: 4181 ; and references cited therein -
16a
Alexander (née Gillon) K.Cook S.Gibson CL.Kennedy AR. J. Chem. Soc., Perkin Trans. 1 2001, 1538 -
16b
Wu Y.Shen X.Yang Y.-Q.Hu Q.Huang J.-H. J. Org. Chem. 2004, 69: 3857
References and Notes
In a typical experiment to THF (5 mL) was added a solution of SmI2 (0.1 N) in THF (0.1 mmol, 1 mL) and EtOH (10 mmol, 600 µL) followed by a solution of N-dodecanoyl-oxazolidinone (1b, 1 mmol, 269 mg) in THF (2 mL). The reaction mixture turned from blue to light yellow within a few minutes. The reaction was monitored by TLC, which indicated total conversion of the starting product after 2 h. The reaction was hydrolyzed with 1 N HCl, extracted by CH2Cl2, and dried over MgSO4. The crude product was purified by column chromatography on silica gel to afford ethyl dodecanoyl ester [2c, heptane-EtOAc (90:10), 223 mg, 98% yield] and oxazolidinone 3a [CH2Cl2-MeOH (90:10), 58 mg, 67%]. For reactions in the presence of acid-sensitive groups, workup was performed with H2O.
Diethyl 2-(4-Methoxyphenylamino)succinate (2i)
1H NMR (250 MHz, CDCl3): δ = 6.81 (d, J = 8.8 Hz, 2 H), 6.69 (d, J = 8.8 Hz, 2 H), 4.35-4.45 (m, 1 H), 4.14-4.38 (m, 4 H), 3.77 (s, 3 H), 2.85 (d, J = 6.3 Hz, 2 H), 1.25-1.31 (m, 6 H) ppm. 13C NMR (62.9 MHz, CDCl3): δ = 172.6, 170.6, 153.1, 140.4, 115.7, 114.8, 61.5, 60.9, 55.6, 55.0, 53.4, 37.6, 14.1 ppm. ESI-HRMS: m/z calcd for [C15H21NO5 + Na]+: 318.1312; found: 318.1323.
Ethyl 3-(2-Methoxyphenylamino)butanoate (2j)
1H NMR (400 MHz, CDCl3): δ = 6.85 (t, J = 7.6 Hz, 1 H), 6.75 (d, J = 8.1 Hz, 1 H), 6.27-6.67 (m, 2 H), 4.32 (br s, 1 H), 4.12 (q, J = 7.3 Hz, 2 H), 3.90-3.95 (m, 1 H), 3.81 (s, 3 H), 2.67 (dd, J
1 = 5.1 Hz, J
2 = 14.9 Hz, 1 H), 2.36 (dd, 1 H, J
1 = 7.6 Hz, J
2 = 14.9 Hz, 1 H), 1.28 (d, J = 6.3 Hz, 3 H), 1.23 (t, J = 7.3 Hz, 3 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 171.8, 146.9, 136.6, 121.3, 116.5, 110.4, 109.6, 60.4, 55.4, 45.5, 41.3, 20.7, 14.2 ppm. ESI-HRMS: m/z calcd for [C13H19NO3 + Na]+: 260.1257; found: 260.1254.
Ethyl 3-(4-Methoxyphenylamino)-2-methylpropanoate (2k)
1H NMR (250 MHz, CDCl3): δ = 6.76 (d, J = 8.8 Hz, 2 H), 6.55 (d, J = 8.8 Hz, 2 H), 4.10 (q, J = 6.9 Hz, 2 H), 3.72 (s, 3 H), 3.35 (dd, J
1 = 8.3 Hz, J
2 = 12.8 Hz, 1 H), 3.14 (dd, J
1 = 5.3 Hz, J
2 = 12.8 Hz, 1 H), 2.72-2.80 (m, 1 H), 1.18-1.30 (m, 6 H) ppm. 13C NMR (62.9 MHz, CDCl3): δ = 175.4, 152.3, 141.9, 114.9, 114.4, 60.5, 55.8, 48.1, 39.3, 15.0, 14.2 ppm. ESI-HRMS: m/z calcd for [C13H19NO3 + Na]+: 260.1257; found: 260.1252.