Subscribe to RSS
DOI: 10.1055/s-2008-1072770
Rearrangement of 2-Hydroxyalkylazetidines into 3-Fluoropyrrolidines
Publication History
Publication Date:
07 May 2008 (online)
Abstract
Upon treatment with DAST (diethylaminosulfur trifluoride) enantiopure 2-hydroxyalkylazetidines rearrange into 3-fluoropyrrolidines. The reaction is stereospecific and involves a bicyclic 1-azoniabicyclo[2.1.0]pentane intermediate which is regioselectively opened by a fluoride anion.
Key words
fluorination - DAST - pyrrolidines - azetidines
- 1
Humphreys A. Med Ad News 2006, 25 (6): 20 -
2a
Demange L.Ménez A.Dugave C. Tetrahedron Lett. 1998, 39: 1169 ; and references cited therein -
2b
Singh RP.Shreeve JM. J. Fluorine Chem. 2002, 116: 23 -
2c
Burger K.Rudolph M.Fehn S.Sewald N. J. Fluorine Chem. 1994, 66: 87 -
3a
Hulin B.Cabral S.Lopaze MG.Van Volkenburg MA.Andrews KM.Parker JC. Bioorg. Med. Chem. Lett. 2005, 15: 4770 -
3b
Ayad T.Génisson Y.Broussy S.Baltas M.Gorrichon L. Eur. J. Org. Chem. 2003, 2903 - 4
Xu F.Simmons B.Armstrong .Murry J. J. Org. Chem. 2005, 70: 6105 - 5
Bonini FB.Boschi F.Franchini MC.Fochi M.Fini F.Mazzanti A.Ricci A. Synlett 2006, 543 - 6
Li Y.Hu J. Angew. Chem. Int. Ed. 2007, 46: 2489 - 7
Smith EM.Swiss GF.Neustadt BR.Gold EH.Sommer JA.Brown AD.Chiu PJS.Moran R.Sybertz EJ.Baum T. J. Med. Chem. 1988, 31: 875 - 8
Inagaki H.Miyauchi S.Miyauchi RN.Kawato HC.Ohki H.Matsuhachi N.Kawakami K.Takahashi H.Takemura M. J. Med. Chem. 2003, 46: 1005 - 9
Yang W.Wang Y.Roberge JY.Ma Z.Liu Y.Lawrence RM.Rotella DP.Seethala R.Feyen JHM.Dickson J. Bioorg. Med. Chem. Lett. 2005, 15: 1225 -
10a
Xu J.Wei L.Mathwink R.He J.Park Y.-J.He H.Leiting B.Lyons KA.Marsillo F.Patel RA.Wu JK.Thornberry NA.Weber AE. Bioorg. Med. Chem. Lett. 2005, 15: 2533 -
10b
Ganelin CB.Bisop PB.Bambal RB.Chan SMT.Leblond B.Moore ANJ.Zhao L.Bourgeat P.Rose C.Vargas F.Schwartz J.-C. J. Med. Chem. 2005, 48: 7333 -
10c
Caldwell CG.Chen P.He J.Parmee ER.Leiting B.Marsilio F.Patel RA.Wu JK.Eiermann GJ.Petrov A.He H.Lyons KA.Thornberry NA.Weber AE. Bioorg. Med. Chem. Lett. 2004, 14: 1265 - 11
O’Neil IA.Thompson S.Kalindjan B.Jenkins T. Tetrahedron Lett. 2003, 44: 7809 -
12a
Déchamps I.Gomez Pardo D.Cossy J. Synlett 2007, 263 -
12b
Déchamps I.Gomez Pardo D.Cossy J. Eur. J. Org. Chem. 2007, 4224 -
13a
Couty F.Durrat F.Prim D. Tetrahedron Lett. 2003, 44: 5209 -
13b
Vargas-Sanchez M.Couty F.Evano G.Prim D.Marrot J. Org. Lett. 2005, 7: 5861 -
13c
Couty F.Durrat F.Evano G.Marrot J. Eur. J. Org. Chem. 2006, 4214 -
14a
Agami C.Couty F.Evano G. Tetrahedron: Asymmetry 2002, 13: 297 -
14b
Couty F.Prim D. Tetrahedron: Asymmetry 2002, 13: 2619 -
14c
Couty F.Durrat F.Evano G.Prim D. Tetrahedron Lett. 2004, 45: 7525 -
14d
Couty F.Evano G.Vargas-Sanchez M.Bouzas G. J. Org. Chem. 2005, 70: 9028 -
14e
Couty F.Evano G.Rabasso N. Tetrahedron: Asymmetry 2003, 14: 2407 - 15
Middleton WJ. J. Org. Chem. 1975, 40: 574 - 19
Couty F.Durrat F.Evano G. Targets in Heterocyclic Systems - Chemistry and Properties Vol. 9:Attanasi OA.Spinelli D. Italian Society of Chemistry; Rome: 2005. p.186
References and Notes
Crystal structure has been deposited at the Cambridge Crystallographic Data Centre and allocated the deposition number CCDC 676883.
17The kinetic control invoked here is also supported by the chemical stability of 36, which does not rearrange when heated at 100 °C in toluene for 8 h.
18
General Procedure for the Reaction of Azetidinols with DAST: To a solution of the required 2-hydroxyalkyl-
azetidine (1 mmol) in anhyd CH2Cl2 (7 mL) cooled at 0 °C under argon was added dropwise diethylaminosulfur trifluoride (245 µL, 2 mmol). The resulting solution was allowed to reach r.t. (1 h) and was stirred for 1 h. The reaction mixture was then basified with 1 M NaOH (5 mL). The layers were separated and the aqueous layer was extracted with CH2Cl2 (2 × 10 mL). Drying over MgSO4, filtration, and evaporation of the solvent under reduced pressure gave a residue that was purified by flash chromatography.
Selected data: Compound 26: yield (from 10): 81%; colorless oil; R
f
0.75 (EtOAc); [α]D
25 -46.1 (c = 0.57, CHCl3). 1H NMR (300 MHz): δ = 1.40 (d, J = 6.6 Hz, 3 H, Me), 1.80-2.15 (m, 2 H, H4, H4′), 2.50-3.75 (m, 3 H, H2, H5, H5′), 2.79 (dd, J = 12.0, 30.0 Hz, 1 H, H2′), 3.21 (q, J = 6.6 Hz, 1 H, CHMe), 5.13 (dt, 2
J
HF = 54.0 Hz, 3
J
HH = 6.0 Hz, 1 H, H3), 7.13-7.28 (m, 5 H, Ar). 13C NMR (75 MHz): δ = 23.1 (Me), 32.8 (d, 3
J
C-F = 23.0 Hz, C2), 50.9 (C4), 59.6 (d, 3
J
CF = 23.0 Hz, C4), 65.4 (CHMe), 92.5 (d, 2
J
CF = 176.0 Hz, C3), 127.0, 128.1, 128.4 (CHAr), 145.1 (CqAr). 19F NMR (188 MHz): δ = -168.2 [qd (false hept), 2
J
HF = 80.7 Hz,
3
J
HF = 30.0 Hz, 1 F]. MS (CI, NH3 gas): m/z = 194 (100) [MH+]. Compound 30: yield (from 14): 79%; colorless solid; mp 69 °C; R
f
0.85 (EtOAc-pentane, 1:9); [α]D
25 +119.8 (c = 0.5, CHCl3). 1H NMR (300 MHz): δ = 1.29 (d, J = 6.0 Hz, 3 H, Me), 2.48-2.72 (m, 2 H, H2, H5), 3.16 (ddd, 3
J
HH = 3.0, 9.0 Hz, 3
J
HF = 36.0 Hz, 1 H, H5′), 3.27 (d, J = 12.0 Hz, 1 H, NCHHPh), 3.35 (dd, 3
J
HH = 12.0 Hz, 3
J
HF = 21.0 Hz, 1 H, H3), 4.22 (d, J = 12.0 Hz, 1 H, NCHHPh), 5.10 (dm, 2
J
HF = 57.0 Hz, 1 H, H4), 7.22-7.41 (m, 10 H, Ar). 13C NMR (75 MHz): δ = 16.0 (Me), 57.4 (NCH2Ph), 60.3, 60.8 (d, 3
J
CF = 23.0 Hz, C3, C5), 67.2 (d, 4
J
CF = 2.2 Hz, C2), 98.3 (d, 2
J
CF = 182.0 Hz, C4), 127.1, 127.2, 127.4, 128.1, 128.4, 128.8, 128.9 (CHAr), 138.4, 140.5 (CqAr). 19F NMR (188 MHz):
δ = -164.4 to -165.2, (m, 1 F). MS (ESI, +ve): m/z = 270.3 (100) [MH+].