Subscribe to RSS
DOI: 10.1055/s-2008-1078415
6-Exo Cyclizations of 2-Indolylacyl Radicals: Access to the Uleine Alkaloid Skeleton
Publication History
Publication Date:
16 May 2008 (online)
Abstract
A new straightforward approach to the bridged framework of uleine alkaloids, based on the 6-exo cyclization of selenoester-derived 3-(tetrahydro-2-pyridyl)-2-indolylacyl radicals under reductive conditions, is described.
Key words
indoles - radical reactions - cyclizations - metathesis - alkaloids
- 1 For a review on the chemistry of acyl radicals, see:
Chatgilialoglu C.Crich D.Komatsu M.Ryu I. Chem. Rev. 1999, 99: 1991 - 2
Bennasar M.-L.Roca T.Ferrando F. Org. Lett. 2004, 6: 759 - 3
Bennasar M.-L.Roca T.García-Díaz D. J. Org. Chem. 2007, 72: 4562 - 4
Bennasar M.-L.Roca T.Ferrando F. J. Org. Chem. 2006, 71: 1746 - For reviews, see:
-
5a
Joule JA. Indoles, The Monoterpenoid Indole Alkaloids, In The Chemistry of Heterocyclic Compounds Vol. 25:Weissberger A.Taylor EC. Wiley; New York: 1983. -
5b
Alvarez M.Joule JA. Monoterpenoid Indole Alkaloids, In The Chemistry of Heterocyclic Compounds Supplement to Vol. 25:Taylor EC. Wiley; Chichester: 1994. Part 4 Chap. 6. -
5c
Alvarez M.Joule JA. In The Alkaloids Vol. 57:Cordell GA. Academic Press; New York: 2001. Chap. 4. - For reviews, see:
-
6a
Bosch J.Bonjoch J. In Studies in Natural Products Chemistry . Elsevier; Amsterdam: 1988. p.31-88 -
6b
Sapi J.Massiot G. Monoterpenoid Indole Alkaloids, In The Chemistry of Heterocyclic Compounds Supplement to Vol. 25:Taylor EC. Wiley; Chichester: 1994. Part 4 Chap. 7. -
6c
Bosch J.Bonjoch J.Amat M. In The Alkaloids Vol. 48:Cordell GA. Academic Press; New York: 1996. p.75-189 - 7 For a leading review, see:
Bowman WR.Fletcher AJ.Potts GBS. J. Chem. Soc., Perkin Trans. 1 2002, 2747 -
8a
Della EW.Knill AM. J. Org. Chem. 1996, 61: 7529 -
8b
Della EW.Smith PA. J. Org. Chem. 2000, 65: 6627 -
9a
Kuehne ME.Wang T.Seraphin D. J. Org. Chem. 1996, 61: 7873 -
9b
Kuehne ME.Bandarage UK.Hammach A.Li Y.-L.Wang T. J. Org. Chem. 1998, 63: 2172 -
9c
Eichberg MJ.Dorta RL.Grotjahn DB.Lamottke K.Schmidt M.Vollhardt KPC. J. Am. Chem. Soc. 2001, 123: 9324 -
10a
Hoepping A.George C.Flippen-Anderson J.Kozikowski AP. Tetrahedron Lett. 2000, 41: 7427 -
10b
Yu J.Wang T.Liu X.Deschamps J.Flippen-Anderson J.Liao X.Cook JM. J. Org. Chem. 2003, 68: 7565 -
11a
Tamura O.Yanagimachi T.Kobayashi T.Ishibashi H. Org. Lett. 2001, 3: 2427 -
11b
Bower JF.Szeto P.Gallagher T. Chem. Commun. 2005, 5793 -
11c
Bower JF.Szeto P.Gallagher T. Org. Biomol. Chem. 2007, 5: 143 - 12
Dandapani S.Duduta M.Panek JS.Porco JA. Org. Lett. 2007, 9: 3849 -
13a
Quirante J.Vila X.Escolano C.Bonjoch J. J. Org. Chem. 2002, 67: 2323 -
13b
Grainger RS.Welsh EJ. Angew. Chem. Int. Ed. 2007, 46: 5377 - 14
Quirante J.Escolano C.Massot M.Bonjoch J. Tetrahedron 1997, 53: 1391 - 15
Davies JR.Kane PD.Moody CJ.Slawin AMZ. J. Org. Chem. 2005, 75: 5840 - 19
Batty D.Crich D. Synthesis 1990, 273 - For discussions, see:
-
22a
Beckwith ALJ.O’Shea DM.Westwood SW. J. Am. Chem. Soc. 1987, 110: 2565 -
22b
Boger DL.Mathvink RJ. J. Org. Chem. 1992, 57: 1429 -
22c
Dowd P.Zhang W. Chem. Rev. 1993, 93: 2091 -
22d
Chatgilialoglu C.Ferreri C.Lucarini M.Venturini A.Zavitsas AA. Chem. Eur. J. 1997, 3: 376
References and Notes
All attempts to carry out the amination-imine allylation sequence from an indole-3-carbaldehyde already incorporating a carboxylic acid or ester at the 2-position resulted in lactamization.
17Removal of the Boc group under the usual acidic conditions (TFA, r.t.) resulted in decomposition.
18Selenoester 5: mp 174-175 ºC. 1H NMR (400 MHz, CDCl3): δ = 2.48 (br d, J = 17.2 Hz, 1 H), 2.79 (m, 1 H), 3.59 (s, 3 H), 4.02 (d, J = 17.6 Hz, 1 H), 4.29 (d, J = 18.0 Hz, 1 H), 6.00 (m, 3 H), 7.10 (t, J = 7.2 Hz, 1 H), 7.33 (t, J = 8.0 Hz, 1 H), 7.39 (d, J = 8.4 Hz, 1 H), 7.44 (m, 3 H), 7.62 (m, 2 H), 7.68 (d, J = 8.0 Hz, 1 H), 8.74 (br s, 1 H). 13C NMR (75.4 MHz, CDCl3): δ = 30.3 (CH2), 42.4 (CH2), 46.9 (CH), 52.7 (Me), 112.4 (CH), 121.1 (CH), 122.8 (CH), 124.9 (CH), 125.5 (C), 126.0 (C), 126.1 (2 × CH), 129.2 (CH), 129.4 (CH), 130.7 (C), 136.2 (CH), 136.8 (C), 156.6 (C), 183.4 (C); indole C-3 was not observed. Anal. Calcd for C22H20N2O3Se·H2O: C, 57.77; H, 4.84; N, 6.12. Found: C, 57.92; H, 4.52; N, 5.92.
20Selenoester 9: 1H NMR (400 MHz, CDCl3): δ = 1.65 (s, 9 H), 2.66 (dddd, J = 1.2, 5.4, 6.9, 18.3 Hz, 1 H), 2.83 (s, 3 H), 2.89 (dddd, J = 2.7, 3.0, 11.4, 18.6 Hz, 1 H), 5.14 (dd, J = 6.9, 11.4 Hz, 1 H), 6.08 (ddd, J = 0.9, 2.7, 9.6 Hz, 1 H), 6.56 (ddd, J = 3.0, 5.1, 9.9 Hz, 1 H), 7.29 (ddd, J = 0.9, 7.2, 8.1 Hz, 1 H), 7.43 (m, 3 H), 7.46 (ddd, J = 1.2, 7.5, 8.4 Hz, 1 H), 7.61 (m, 2 H), 7.75 (d, J = 7.8 Hz, 1 H), 8.19 (d, J = 8.4 Hz, 1 H). 13C NMR (100.6 MHz, CDCl3): δ = 28.0 (Me), 31.0 (CH2), 31.9 (Me), 53.5 (CH), 86.2 (C), 115.8 (CH), 120.7 (C), 121.6 (CH), 124.0 (CH), 124.9 (CH), 125.9 (C), 126.2 (C), 127.1 (CH), 129.4 (CH), 129.6 (CH), 134.6 (C), 135.3 (CH), 136.3 (C), 138.1 (CH), 148.6 (C), 165.7 (C), 188.4 (C).
21
Typical Procedure for the Radical Cyclization: n-Bu3SnH (0.13 mL, 0.50 mmol) and Et3B (1 M in hexanes, 0.50 mL, 0.50 mmol) were added to a solution of the phenyl selenoester 5 or 9 (0.25 mmol, previously dried azeotropically with anhyd benzene) in anhyd benzene (7 mL). The reaction mixture was stirred at r.t. for 2-4 h with dry air constantly supplied by passing compressed air through a short tube of Drierite. The reaction mixture was concentrated. The residue was partitioned between hexanes (10 mL) and MeCN (10 mL), and the polar layer was washed with hexanes (3 × 10 mL). The MeCN solution was concentrated and the crude product was chromatographed (SiO2, flash, hexanes-EtOAc, 7:3 or 8:2).
Methyl 6-Oxo-1,2,3,4,5,6-hexahydro-1,5-methanoazocino[4,3-
b
]indole-2-carboxylate (10): yield: 60%. 1H NMR (400 MHz, CDCl3; assignment aided by HSQC and COSY, mixture of rotamers): δ = 2.02 (m, 2 H, 4-H), [2.22 (dt, J = 2.8, 2.8, 12.8 Hz) and 2.55 (br d, J = 10.8 Hz), 2 H, 12-H], [2.78 (br t, J = 12.8 Hz) and 3.80-4.00 (masked), 2 H, 3-H], 2.89 (s, 1 H, 5-H), 3.68, 3.88 (2 × s, 3 H, OMe), 5.78, 5.94 (2 × s, 1 H, 1-H), 7.18 (t, J = 7.2 Hz, 1 H, 10-H), 7.39 (t, J = 8.4 Hz, 1 H, 9-H), 7.48 (d, J = 8.0 Hz, 1 H, 8-H), [7.69 (br d, J = 6.8 Hz) and 7.91 (d, J = 7.6 Hz), 1 H, 11-H], 9.60, 9.64 (2 × s, 1 H, 7-H). 13C NMR (100.6 MHz, CDCl3; assignment aided by HSQC and HMBC, mixture of rotamers): δ = 29.0 (C-4), 35.4 (C-12), 36.5 (C-3), 41.3 (C-5), 43.6, 44.1 (C-1), 52.7 (OMe), 112.5, 112.8 (C-8), 121.3 (C-10), 121.7, 122.7 (C-11), 124.3 (C-11a), 125.4 (C-11b), 127.5 (C-9), 132.6 (C-6a), 138.4 (C-7a), 155.9, 156.2 (CO2), 193.3 (C-6). HRMS (ESI): m/z [M + H]+ calcd for C16H17N2O2: 285.1233; found: 285.1232.
Methyl 5-Oxo-2,3,4,5-tetrahydro-1,4-ethanoazepino[4,3-
b
]-1
H
-indole-2-carboxylate
(11): yield: 10%. 1H NMR (400 MHz, CDCl3; assignment aided by HSQC and COSY, mixture of rotamers): δ = 1.90 (m, 2 H, 11-H, 12-H), 2.13 (m, 1 H, 12-H), 2.41 (m, 1 H, 11-H), [3.21 (t, J = 5.2 Hz) and 3.26 (br t), 1 H, 4-H], [3.51 (d, J = 12.8 Hz) and 3.65 (m), 2 H, 3-H], 3.64, 3.65 (2 × s, 3 H, OMe), [5.79 (dd, J = 2.4, 5.6 Hz)and 5.98 (dd, J = 2.0, 5.2 Hz), 1 H, 1-H], 7.22 (t, J = 7.6 Hz, 1 H, 9-H), 7.41 (m, 2 H, 7-H, 8-H), [7.79 (d, J = 8.0 Hz) and 7.91 (d, J = 7.6 Hz), 1 H, 10-H], 8.96, 8.99 (2 × s, 1 H, 6-H). 13C NMR (100.6 MHz, CDCl3; assignment aided by HSQC and HMBC, mixture of rotamers): δ = 18.7 (C-12), 26.9, 27.0 (C-11), 42.3, 42.5 (C-3), 45.0, 45.5 (C-1), 46.5 (C-4), 52.6, 52.7 (MeO), 112.2, 112.4 (C-7), 120.7, 121.0 (C-10), 121.2 (C-9), 124.6, 124.8 (C-10a), 127.0, 127.2 (C-8), 130.7, 131.2 (C-10b), 132.8, 132.9 (C-5a), 137.2, 137.3 (C-6a), 155.6, 155.9 (CO2), 194.0 (C-5). HRMS (ESI): m/z [M + H]+ calcd for C16H17N2O2: 285.1233; found: 285.1233.
tert
-Butyl 2-Methyl-3,6-dioxo-1,2,3,4,5,6-hexahydro-1,5-methanoazocino[4,3-
b
]indole-7-carboxylate
(12): yield: 72%. 1H NMR (400 MHz, CDCl3; assignment aided by HSQC and COSY): δ = 1.62 (s, 9 H, Boc), 2.51 (dt, J = 3.2, 3.2, 13.2 Hz, 1 H, 12-H), 2.67 (dm, J = 13.2 Hz, 1 H, 12-H), 2.69 (d, J = 19.2 Hz, 1 H, 4-H), 2.93 (dd, J = 8.0, 18.4 Hz, 1 H, 4-H), 3.10 (s, 3 H, NMe), 3.17 (dt, J = 3.2, 3.2, 8.0 Hz, 1 H, 5-H), 4.79 (t, J = 3.2 Hz, 1 H, 1-H), 7.34 (t, J = 7.6 Hz, 1 H, 10-H), 7.51 (ddd, J = 1.2, 8, 8.8 Hz, 1 H, 9-H), 7.73 (d, J = 8.0 Hz, 1 H, 11-H), 8.08 (d, J = 8.8 Hz, 1 H, 8-H). 13C NMR (100.6 MHz, CDCl3; assignment aided by HSQC and HMBC): δ = 27.6 (Me), 33.3 (C-12), 34.6 (NMe), 35.4 (C-4), 42.9 (C-5), 50.7 (C-1), 85.0 (C), 115.2 (C-8), 120.6 (C-11), 123.8 (C-10), 125.0 (C-11a), 129.3 (C-9), 130.3 (C-6a), 135.7 (C-11b), 139.1 (C-7a), 149.1 (CO2), 167.8 (C-3), 188.8 (C-6). HRMS (ESI): m/z [M + H]+ calcd for C20H23N2O4: 355.1652; found: 355.1649. Anal. Calcd for C20H22N2O4·1/4H2O: C, 66.94; H, 6.32; N, 7.80. Found: C, 66.64; H, 6.27; N, 7.56.
Tetracycle 13: 1H NMR (300 MHz, CDCl3): δ = 2.56 (dt, J = 3.3, 3.3, 13.2 Hz, 1 H, 12-H), 2.69 (m, 1 H, 12-H), 2.69 (m, 1 H, 4-H), 3.01 (dd, J = 8.4, 18.9 Hz, 1 H, 4-H), 3.11 (s, 3 H, NMe), 3.20 (dt, J = 3.0, 3.0, 8.4 Hz, 1 H, 5-H), 4.83 (t, J = 3.0 Hz, 1 H, 1-H), 7.21 (ddd, J = 0.9, 7.2, 8.4 Hz, 1 H, 10-H), 7.39 (ddd, J = 0.9, 6.6, 7.8 Hz, 1 H, 9-H), 7.49 (dt, J = 0.9, 0.9, 8.1 Hz, 1 H, 8-H), 7.75 (d, J = 8.1 Hz, 1 H, 11-H), 9.86 (br s, 1 H, 7-H). 13C NMR (100.6 MHz, CDCl3): δ = 34.3 (C-12), 34.4 (NMe), 35.4 (C-4), 42.0 (C-5), 50.9 (C-1), 113.2 (C-8), 120.7 (C-11), 121.7 (C-10), 124.5 (C-11a), 127.6 (C-9), 129.0 (C-11b), 129.6 (C-6a), 138.1 (C-7a), 168.0 (C-3), 192.1 (C-6). Anal. Calcd for C15H14N2O4·1/2H2O: C, 68.43; H, 5.74; N, 10.64. Found: C, 68.49; H, 5.68; N, 10.30.