Subscribe to RSS
DOI: 10.3413/nukmed-0364
Anatomical accuracy of abdominal lesion localization
Retrospective automatic rigid image registration between FDG-PET and MRIAnatomische Genauigkeit der retrospektiven, automatischen und starren Bildregistrierung zwischen FDG-PET und MRI bei abdominalen LäsionenRetrospektive automatische starre Bildregistrierung zwischen FDG-PET und MRTPublication History
received:
29 October 2010
accepted in revised form:
28 April 2011
Publication Date:
28 December 2017 (online)
Summary
Software-based image registration can improve the diagnostic value of imaging procedures and is an alternative to hybrid scanners. The aim of this study was to evaluate the anatomical accuracy of automatic rigid image registration of independently acquired datasets of positron emission tomography with 18F-deoxyglucose and abdominal magnetic resonance imaging. Patients, methods: Analyses were performed on 28 abdominal lesions from 20 patients. The PET data were obtained using a stand-alone PET camera in 14 cases and a hybrid PET/CT scanner in 9 cases. The abdominal T1- and T2-weighted MRI scans were acquired on 1.5 T MRI scanners. The mean time interval between MRI and PET was 7.3 days (0–28 days). Automatic rigid registration was carried out using a self-developed registration tool integrated into commercial available software (InSpace for Siemens Syngo). Distances between the centres of gravity of 28 manually delineated neoplastic lesions represented in PET and MRI were measured in X-, Y-, and Z-direction. The intra- (intraclass correlation 0.94) and inter- (intraclass correlation 0.86) observer repeatability were high. Results: The average distance in all MRI sequences was 5.2 ± 7.6 mm in X-direction, 4.0 ± 3.7 mm in Y-direction and 6.1 ± 5.1 mm in Z-direction. There was a significantly higher misalignment in Z-direction (p < 0.05). The misalignment was not significantly different for the registration of T1- and T2- weighted sequences (p = 0.7). Conclusion: The misalignment between FDG-PET and abdominal MRI registered using an automated rigid registration tool was comparable to data reported for software-based fusion between PET and CT. Although this imprecision may not affect diagnostic accuracy, it is not sufficient to allow for pixel-wise integration of MRI and PET information.
Zusammenfassung
Retrospektive Bildregistrierung kann die diagnostische Genauigkeit erhöhen und in einigen Anwendungsbereichen eine Alternative zu Hybridgeräten sein. Ziel der Studie war es, die anatomische Genauigkeit einer retrospektiven, automatisierten und starren Registrierung zwischen unabhängig akquirierten Aufnahmen der 18F-Deoxyglukose-Positronenemissions-tomographie und abdomineller Magnetresonanztomographie zu ermitteln. Patienten, Methoden: Die Analyse wurde an 28 abdominellen Läsionen von 20 Patienten durchgeführt. Bei 14 Patienten wurden Datensätze mit einer dedizierten PET-Kamera, bei 9 Patienten mit einem hybriden PET/CT aufgenommen. Unabhängig davon wurden T1- und T2-gewichtete MRT-Aufnahmen des Abdomens an 1,5-T-MR-Tomographen akquiriert. Die mittlere Zeit zwischen den beiden Aufnahmen betrug 7,3 Tage (0–28 Tage). Die automatisierte und starre Registrierung wurde mit einem selbst entwickelten Registrierungstool, integriert in eine kommerzielle Plattform (InSpace für Siemens Syngo) durchgeführt. Die Distanzen zwischen den Schwerpunkten der 28, manuell markierten, neoplastischen Läsionen im PET und MRT wurden bei hoher Wiederhol- (Intra-Klassen-Korrelation 0,94) und Vergleichspräzision (Intra-Klassen Korrelation 0,86) in X-, Y-, und Z-Richtung vermessen. Ergebnisse: Die mittlere Schwerpunktdistanz für alle MRT-Sequenzen betrug 5,2 ± 7,6 mm in X-Richtung, 4,0 ± 3,7 mm in Y-Richtung und 6,1 ± 5,1 mm in Z-Richtung. Verschiebungen in Z-Richtung waren signifikant größer (p < 0,05). Es gab keine signifikant unterschiedlichen Abstände für die Registrierung der T1- und T2-gewichteten Sequenzen (p = 0,7). Schlussfolgerung: Die Ungenauigkeit der automatischen und starren Bildregistrierung zwischen FDG-PET und abdomineller MRT ist mit denjenigen für die retrospektive Registrierung zwischen PET und CT publizierten Daten vergleichbar. Obwohl diese Ungenauigkeit die diagnostische Zuverlässigkeit wohl nicht einschränkt, ist sie für eine pixelweise Verrechnung der Datensätze nicht ausreichend.
-
References
- 1 Bockisch A, Freudenberg LS, Schmidt D. et al. Hybrid imaging by SPECT/CT and PET/CT: Proven outcomes in cancer imaging. Semin Nucl Med 2009; 39: 276-289.
- 2 Boss A, Bisdas S, Kolb A. et al. Hybrid PET/MRI of intracranial masses: Inital experiences and comparison to PET/CT. J Nucl Med 2010; 51: 1198-1205.
- 3 Borgwardt L, Hojgaard L, Carstensen H. et al. Increased fluorine-18 2-fluoro-2-deoxy-D-glucose (FDG) uptake in childhood CNS tumors is correlated with malignancy grade: A study with FDG positron emission tomography/magnetic resonance imaging coregistration and image fusion. J Clin Oncol 2005; 23: 3030-3037.
- 4 Cizek J, Herholz K, Vollmar S. et al. Fast and robust registration of PET and MR images of human brain. Neuroimage 2004; 22: 434-442.
- 5 Cohade C, Osman M, Marshall LT, Wahl RL. PET-CT: accuracy of PET and CT spatial registration of lung lesions. Eur J Nucl Med Mol Imaging 2003; 30: 721-726.
- 6 Dawood M, Büther F, Lang N. et al. Transforming Static CT in Gated PET/CT Studies to Multiple Respiratory Phases. Proceedings of the 18th International Conference of Pattern Recognition 2006.
- 7 Donati O, Hany T, Reiner C. et al. Value of retrospective fusion of PET and MR images in detection of hepatic metastases: Comparison with 18F-FDG PET/CT and Gd-EOB-DTPA-enhanced MRI. J Nucl Med 2010; 51: 692-699.
- 8 Donati O, Reiner C, Hany T. et al. 18F-FD G-PET and MRI in patients with malignancies of the liver and pancreas accuracy of retrospective multimodality image registration by using the CT-component of PET/CT. Nuklearmedizin 2010; 49: 106-114.
- 9 Even-Sapir E, Keidar Z, Bar-Shalom R. Hybrid Imaging (SPECT/CT and PET/CT)-improving the diagnostic accuracy of functional/metabolic and anatomic imaging. Semin Nucl Med 2009; 39: 264-275.
- 10 Goerres GW, Burger C, Schwitter MR. et al. PET/CT of the abdomen: optimizing the patient breathing pattern. Eur Radiol 2003; 13: 734-739.
- 11 Hahn DA, Daum V, Hornegger J. Automatic Parameter Selection for Multimodal Image Registration. IEEE Trans Med Imaging 2010; 29: 1140-1155.
- 12 Herzog H, Pietrzyk U, Shah NJ. et al. The current state, challenges and perspectives of MR-PET. Neuroimage 2010; 49: 2072-2082.
- 13 Judenhofer MS, Wehrl HF, Newport DF. et al. Simultaneous PET-MRI: a new approach for functional and morphological imaging. Nat Med 2008; 14: 459-465.
- 14 Kawano T, Ohtake E, Inoue T. Deep-inspiration breath-hold PET/CT versus free breathing PET/CT and respiratory-gating PET for reference: evaluation of 95 patients with lung cancer. Ann Nucl Med 2011; 25: 109-116.
- 15 Kim JH, Czernin J, Allen-Auerbach MS. et al. Comparison between F-18-FDG PET, in-line PET/CT, and software fusion for restaging of recurrent colorectal cancer. J Nucl Med 2005; 46: 587-595.
- 16 Nomayr A, Romer W, Hothorn T. et al. Anatomical accuracy of lesion localization - Retrospective interactive rigid image registration between 18F-FD G-PET and X-ray CT. Nuklearmedizin 2005; 44: 149-155.
- 17 Ollinger JM. Model-based scatter correction for fully 3D PET. Phys Med Biol 1996; 41: 153-176.
- 18 Osman MM, Cohade C, Nakamoto Y. et al. Respiratory motion artifacts on PET emission images obtained using CT attenuation correction on PET-CT. Eur J Nucl Med Mol Imaging 2003; 30: 603-606.
- 19 Palmedo H, Bucerius J, Joe A. et al. Integrated PET/CT in differentiated thyroid cancer: Diagnostic accuracy and impact on patient management. J Nucl Med 2006; 47: 616-624.
- 20 Papathanassiou D, Liehn JC, Bourgeot B. et al. Cesium attenuation correction of the liver dome revealing hepatic lesion missed with computed tomography attenuation correction because of the repiratory motion artifact. Clin Nucl Med 2005; 30: 120-121.
- 21 Paschos KA, Bird N. Current diagnostic and therapeutic approaches for colorectal cancer liver metastasis. Hippokratia 2008; 12: 132-138.
- 22 Pichler BJ, Judenhofer MS, Wehrl HF. PET/MRI hybrid imaging: devices and initial results. Eur Radiol 2008; 18: 1077-1086.
- 23 Pichler BJ, Kolb A, Nägele T. et al. PET/MRI: Paving the way for the next generation of clinical multimodality imaging applications. J Nucl Med 2010; 51: 333-336.
- 24 Rousset OG, Yilong M, Evans AC. Correction of partial volume effects in PET: Principal and validation. J Nucl Med 1998; 39: 904-911.
- 25 Sarikaya I, Yeung H, Erdi Y. et al. Respiratory artefact causing malpositioning of liver dome lesion in right lower lung. Clin Nucl Med 2003; 28: 943-944.
- 26 Schlemmer HPW, Pichler BJ, Schmand M. et al. Simultaneous MR/PET imaging of the human brain: Feasibility study. Radiology 2008; 248: 1028-1035.
- 27 Schöder H, Larson SM, Yeung HW. PET/CT in oncology: Integration into clinical management of lymphoma, melanoma, and gastrointestinal malignancies. J Nucl Med 2004; 45: 72S-81S.
- 28 Slomka PJ, Baum RP. Multimodality image registration with software: state-of-the-art. Eur J Nucl Med Mol Imaging 2009; 36: 44-55.
- 29 Slomka PJ, Dey D, Przetak C. et al. Automated 3-dimensional registration of stand-alone 18F-FDG whole-body PET with CT. J Nucl Med 2003; 44: 1156-1167.
- 30 Somer EJ, Benatar NA, O’Doherty MJ. et al. Use of the CT component of PET-CT to improve PET-MR registration: demonstration in soft-tissue sarcoma. Phys Med Biol 2007; 52: 6991-7006.
- 31 Thees S, Kendziorra K, Marwede D. et al. Towards a software based PET/MR: A new approach for highly accurate registration of PET and MRI scull base to inguinal imaging. Nuklearmedizin 2009; 48: V16.
- 32 Vogel WV, van Dalent JA, Wiering B. et al. Evaluation of image registration in PET/CT of the liver and recommendations for optimized imaging. J Nucl Med 2007; 48: 910-919.
- 33 Wehrl HF, Judenhofer MS, Wiehr S. et al. Pre-clinical PET/MR: technological advances and new perspectives in biomedical research. Eur J Nucl Med Mol Imaging 2009; 36: 56-68.
- 34 Wolz G, Nomayr A, Hothorn T. et al. Anatomical accuracy of interactive and automated rigid registration between X-ray CT and FDG-PET. Nuklearmedizin 2007; 46: 43-48.
- 35 Wolz G, Nömayr A, Hothorn T. et al. Comparison of performance between rigid and non-rigid software registering CT to FDG-PET. Int J Comp Assist Radiol Surg 2007; 2: 183-190.
- 36 Zaidi H, Montandon ML, Alavi A. The clinical role of fusion imaging using PET, CT, and MR imaging. Magn Reson Imaging. Clin N Am 2010; 18: 133-149.