Methods Inf Med 2013; 52(03): 266-276
DOI: 10.3414/ME12-01-0037
Original Articles
Schattauer GmbH

Linear and Nonlinear Analysis of Base Lung Sound in Extrinsic Allergic Alveolitis Patients in Comparison to Healthy Subjects

S. Charleston-Villalobos
2   Electrical Engineering Department, Universidad Autonoma Metropolitana, Mexico City, Mexico
,
L. Albuerne-Sanchez
2   Electrical Engineering Department, Universidad Autonoma Metropolitana, Mexico City, Mexico
,
R. Gonzalez-Camarena
1   Health Science Department, Universidad Autonoma Metropolitana, Mexico City, Mexico
,
M. Mejia-Avila
3   National Institute of Respiratory Diseases, Mexico City, Mexico
,
G Carrillo-Rodriguez
3   National Institute of Respiratory Diseases, Mexico City, Mexico
,
T. Aljama-Corrales
2   Electrical Engineering Department, Universidad Autonoma Metropolitana, Mexico City, Mexico
› Author Affiliations
Further Information

Publication History

received: 27 April 2012

accepted: 02 April 2012

Publication Date:
20 January 2018 (online)

Summary

Objective: Pulmonary disorders are frequently characterized by the presence of adventitious sounds added to the breathing or base lung sound (BLS). The aim of this work was to assess the features of BLS in extrinsic allergic alveolitis (EAA) patients in comparison to healthy subjects, applying linear and nonlinear analysis techniques.

Methods: We investigated the multichannel lung sounds on the posterior chest of 16 females, 8 healthy and 8 EAA patients, when breathing at 1.5 L/s. BLS linear features were obtained from the power spectral density (PSD) while nonlinear features were extracted by the concepts of irregularity and complexity, i.e., spectral, sample and multi-scale entropy.

Results: The results demonstrated that spectral percentiles of BLS were lower in EAA patients than in healthy subjects but statistical significance (p<0.05) was obtained only for expiration at the left apical and both basal regions. Also, the maximum amplitude of the PSD in patients reached statistical significance ( p < 0.05) for the expiratory phase at basal regions. In the case of nonlinear techniques, significant lower values ( p < 0.05) were obtained for EAA patients during both respiratory phases at left apical and both basal regions.

Conclusion: In conclusion, we found that BLS in chronic EAA patients is characterized by lower spectral percentiles, lower irregularity and lower complexity than in healthy subjects suggesting the feasibility of its clinical usefulness by screening its temporal alteration.

 
  • References

  • 1 Sovijärvi ARA, Dalmasso F, Vanderschoot J, Malberg LP, Righini G, Stoneman SAT. Definition of terms for applications of respiratory sounds. Eur Respir Rev 2000; 10: 597-610.
  • 2 Sovijärvi ARA, Malmberg LP, Charbonneau G, Vanderschoot J, Dalmaso F, Sacco C, Rossi M, Earis JE. Characteristics of breath sound and adventitious respiratory sounds. Eur Resp Rev 2000; 10: 591-596.
  • 3 Flietstra B, Markuzon N, Vyshedskiy A, Murphy R. Automated Analysis of Crackles in Patients with Interstitial Pulmonary Fibrosis. Pulmonary Medicine. 2011. Article ID 590506 1-7.
  • 4 Lu X, Bahoura M. An integrated automated system for crackles extraction and classification. Biomedical Signal Processing and Control 2008; 3: 244-254.
  • 5 Charleston-Villalobos S, Dorantes-Méndez G, González-Camarena R, Chi-Lem G, Carrillo JG, Aljama-Corrales T. Acoustic thoracic image of crackle sounds using linear and nonlinear processing techniques. Med Biol Eng Comput 2010; 49: 15-24.
  • 6 Bettencourt PE, Del Bono EA, Spiegelman D, Hertzmark E, Murphy RLH. Clinical utility of chest auscultation in common pulmonary diseases. Am J Respir Crit Care Med 1994; 150: 1291-1297.
  • 7 Pasterkamp H, Kraman S, Wodicka G. Respiratory sounds: advances beyond the stethoscope. Am J Respir Crit Care Med 1997; 156: 974-987.
  • 8 Ono H, Taniguchi Y, Shinoda K, Sakamoto T, Kudoh S, Gemma A. Evaluation of the usefulness of spectral analysis of inspiratory lung sounds recorded with phonopneumography in patients with interstitial pneumonia. J Nippon Med Sch 2009; 76: 67-75.
  • 9 Charleston-Villalobos S, Martínez-Hernandez G, González-Camarena R, Chi-Lem G, Carrillo JG, Aljama-Corrales T. Assessment of multichannel lung sounds parametrization for two-class classification in interstitial lung disease patients. Computers in Biology and Medicine 2011; 41: 473-482.
  • 10 Urquhart RB, McGhee J, MaCleod JE, Banham SW, Moran F. The diagnostic value of pulmonary sounds: a preliminary study by computer-aided analysis. Comput Biol Med 1981; 3: 129-139.
  • 11 Hadjileontiadis LJ, Rekanos IT. Detection of explosive lung and bowel sounds by means of fractal dimension. IEEE Sig Proc Letter 2003; 10: 311-314.
  • 12 Gnitecki J, Moussavi Z. The fractality of lung sounds: a comparison of three waveform fractal dimension algorithms. Chaos, Solutions and Fractals 2005; 26: 1065-1072.
  • 13 Charleston-Villalobos S, Gonzalez-Camarena R, Chi-Lem G, Aljama-Corrales T. Crackle sounds analysis by empirical mode decomposition: nonlinear and nonstationary signal analysis for distinction of crackles in lung sounds. IEEE Eng Med Biol Mag 2007; 26: 40-47.
  • 14 Faistauer D, De Oliveira LPL, Bodmann BEJ. General discrete modeling of lung sound production in normal subjects. Physiol Meas 2005; 26: 109-122.
  • 15 Ahlstrom C, Johansson A, Hult P. Chaotic dynamics of respiratory sounds. Chaos, Solutions and Fractals 2006; 29: 1054-1062.
  • 16 Hadjileontiadis LJ. Wavelet-based enhancement of lung and bowel sounds using fractal dimension thresholding-Part II: application results. IEEE Trans Biomed Eng 2005; 52: 1050-1064.
  • 17 Hadjileontiadis LJ. A texture-based classification of crackles and squawks using lacunarity. IEEE Trans Biomed Eng 2009; 56: 718-732.
  • 18 Charleston-Villalobos S, Cortés-Rubiano S, González-Camarena R, Chi-Lem G, Aljama-Corrales T. Respiratory acoustic thoracic imaging (RATHI): assessing deterministic interpolation techniques. Med Biol Eng Comput 2004; 42: 618-626.
  • 19 Cheetham BMG, Charbonneau G, Giordano A, Helisto P, Vanderschoot J. Digitization of data for respiratory sound recordings. Eur Respir Rev 2000; 10: 621-624.
  • 20 Murphy RLH, Holford SK, Knowler WC. Visual lung-sound characterization by time-expanded wave-form analysis. N Eng J Med 1977; 2196: 968-971.
  • 21 Hoevers J, Loudon R. Measuring crackles. Chest 1990; 98: 1240-1243.
  • 22 Costa M, Golberger AL, Peng CK. Multiscale entropy analysis of biological signal. Physical Rev E 2005; 71 (02) 1-18.
  • 23 Grassberger P, Schreiber T, Schaffrath C. Nonlinear time sequence analysis. Intl J Bifurcation and Chaos 1991; 1: 521-547.
  • 24 Richman JS, Moorman JR. Physiological time-series analysis using approximate entropy and sample entropy. Am J Physiol Heart Circ Physiol 2000; 278: H2039-H2049.
  • 25 Abasolo D, Hornero R, Espino P, Álvarez D, Poza J. Entropy analysis of the EEG background activity in Alzheimer’s disease patients. Physiol Meas 2006; 27: 241-253.
  • 26 Bustos M L, Frías S, Ramos S, Estrada A, Arreola J L, Mendoza F, Gaxiola M, Salcedo M, Pardo A, Selman M. Local and circulating microchimerism is associated with hypersensitivity pneumonitis. Am J Respir Crit Care Med 2007; 176: 90-95.
  • 27 Gavriely N, Cugell DW. Spectral characteristics of breath sounds. In: Breath Sounds Methodology. CRC Press; 1995.
  • 28 Piirilä P, Sovijärvi ARA. Crackles: recording, analysis and clinical significance. Eur Respir J 1995; 10: 2139-2148.
  • 29 Donnerberg RL, Druzgalski CK, Hamlin RL, Davis GL, Campbell RM, Rice DA. Sound transfer function of the congested canine lung. Br J Dis Chest 1980; 74: 23-31.
  • 30 Leung A, Sehati S, Young JD, McLeod C. Sound transmission between 50 and 600 Hz in excised pig lungs filled with air and helium. J Appl Physiol 2000; 89: 2472-2482.
  • 31 Pohlmann A, Sehati S, Young D. Effect of changes in lung volume on acoustic transmission through the human respiratory system. Physiol Meas 2001; 22: 233-243.
  • 32 Selman-Lama M, Pérez-Padilla R. Airflow obstruction and airway lesions in hypersensitivity pneumonitis. Clin Chest Med 1993; 14: 699-714.
  • 33 Erkinjuntti-Pekkanen R, Rytkonen H, Kokkarinen JI, Tukiainen HO, Partanen K, Terho EO. Long-term risk of emphysema in patients with farmer’s lung and matched control farmers. Am J Respir Crit Care Med 1998; 158: 662-665.
  • 34 Sahin H, Brown KK, Curran-Everett D, Hale V, Cool CD, Vourlekis JS, Lynch DA. Chronic hypersensitivity pneumonitis: CT features - comparison with pathologic evidence of fibrosis and survival. Radiology 2007; 244: 591-598.
  • 35 Kraman SS. Vesicular (normal) Lungs Sounds: How are they made, where do they come from, and what do they mean. Sem Respir Med 1985; 6: 183-191.