de Vries, J. G.: 2018 Science of Synthesis, 2017/5: Catalytic Reduction in Organic Synthesis 1 DOI: 10.1055/sos-SD-226-00024
Catalytic Reduction in Organic Synthesis 1

1.1.2 Reduction of Alkenes Using Nanoparticle Catalysis

More Information

Book

Editor: de Vries, J. G.

Authors: Bonrath, W.; Cazin, C. ; Chen, Z.-P.; Dai, X.; de Vries, J. G.; Ding, K. ; Ghosh, B.; Hudson, R.; Kaneda, K. ; Li, Y.; Lv, H. ; Maleczka, Jr., R.; Medlock, J.; Mitsudome, T.; Moores, A.; Müller, M.-A.; Nahra, F. ; Nakagawa, Y.; Poechlauer, P.; Ravasio, N.; Shi, F.; Tamura, M.; Tan, X.; Tin, S.; Tomishige, K.; Zaccheria, F.; Zhang, X.; Zhou, Y.-G. ; Zimmermann, A.

Title: Catalytic Reduction in Organic Synthesis 1

Print ISBN: 9783132406216; Online ISBN: 9783132406254; Book DOI: 10.1055/b-005-145236

Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry

Science of Synthesis Reference Libraries



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Series Editors: Fürstner, A. (Editor-in-Chief); Carreira, E. M.; Faul, M.; Koch, G.; Molander, G. A.; Shibasaki, M.; Thomas, E. J.; Trost, B. M.

Type: Multivolume Edition

 


Abstract

The transformation of alkenes to alkanes via hydrogenation represents a cornerstone of synthetic chemistry. Herein are outlined methods for alkene hydrogenations and transfer hydrogenations catalyzed by supported or unsupported palladium-, nickel-, iridium-, and iron-based nanoparticles.

 
  • 1 Horiuti J, Ogden G, Polanyi M. Trans. Faraday Soc. 1934; 30: 663
  • 2 Ramp FL, DeWitt EJ, Trapasso LE. J. Org. Chem. 1962; 27: 4368
  • 3 Doyle AM, Shaikhutdinov SK, Freund H.-J. J. Catal. 2004; 223: 444
  • 4 Doyle AM, Shaikhutdinov SK, Freund H.-J. Angew. Chem. Int. Ed. 2005; 44: 629
  • 5 Doyle AM, Shaikhutdinov SK, Jackson SD, Freund H.-J. Angew. Chem. Int. Ed. 2003; 42: 5240
  • 6 Bell AT. Science (Washington, D. C.) 2003; 299: 1688
  • 7 Wilde M, Fukutani K, Ludwig W, Brandt B, Fischer J.-H, Schauermann S, Freund H.-J. Angew. Chem. Int. Ed. 2008; 47: 9289
  • 8 Kwon MS, Kim N, Park CM, Lee JS, Kang KY, Park J. Org. Lett. 2005; 7: 1077
  • 9 Ma X, Jiang T, Han B, Zhang J, Miao S, Ding K, An G, Xie Y, Zhou Y, Zhu A. Catal. Commun. 2008; 9: 70
  • 10 Erathodiyil N, Ooi S, Seayad AM, Han Y, Lee SS, Ying JY. Chem.–Eur. J. 2008; 14: 3118
  • 11 Pillai UR, Sahle-Demessie E. J. Mol. Catal. A: Chem. 2004; 222: 153
  • 12 Park CM, Kwon MS, Park J. Synthesis 2006; 3790
  • 13 Nakao R, Rhee H, Uozumi Y. Org. Lett. 2005; 7: 163
  • 14 Uozumi Y, Nakao R. Angew. Chem. Int. Ed. 2003; 42: 194
  • 15 Lan Y, Zhang M, Zhang W, Yang L. Chem.–Eur. J. 2009; 15: 3670
  • 16 Szőri K, Puskás R, Szőllősi G, Bertóti I, Szépvölgyi J, Bartók M. Catal. Lett. 2013; 143: 539
  • 17 Ishikawa S, Hudson R, Moores A. Heterocycles 2012; 86: 1023
  • 18 Shi F, Tse MK, Pohl M.-M, Brückner A, Zhang S, Beller M. Angew. Chem. Int. Ed. 2007; 46: 8866
  • 19 Ishikawa S, Hudson R, Masnadi M, Bateman M, Castonguay A, Braidy N, Moores A, Li C.-J. Tetrahedron 2014; 70: 8952
  • 20 Hudson R, Chazelle V, Bateman M, Roy R, Li C.-J, Moores A. ACS Sustainable Chem. Eng. 2015; 3: 814
  • 21 Abu-Reziq R, Alper H, Wang D, Post ML. J. Am. Chem. Soc. 2006; 128: 5279
  • 22 Polshettiwar V, Varma RS. Org. Biomol. Chem. 2009; 7: 37
  • 23 Hudson R, Feng Y, Varma RS, Moores A. Green Chem. 2014; 16: 4493
  • 24 Polshettiwar V, Varma RS. Green Chem. 2010; 12: 743
  • 25 Hudson R. Synlett 2013; 24: 1309
  • 26 Hudson R. RSC Adv. 2016; 6: 4262
  • 27 Hudson R, Bishop A, Glaisher S, Katz JL. J. Chem. Educ. 2015; 92: 1892
  • 28 Lu A.-H, Salabas EL, Schüth F. Angew. Chem. Int. Ed. 2007; 46: 1222
  • 29 Shylesh S, Schünemann V, Thiel WR. Angew. Chem. Int. Ed. 2010; 49: 3428
  • 30 Guin D, Baruwati B, Manorama SV. Org. Lett. 2007; 9: 1419
  • 31 Kainz QM, Linhardt R, Grass RN, Vilé G, Pérez-Ramírez J, Stark WJ, Reiser O. Adv. Funct. Mater. 2014; 24: 2020
  • 32 Nasir Baig R, Varma RS. ACS Sustainable Chem. Eng. 2014; 2: 2155
  • 33 Hudson R, Hamasaka G, Osako T, Yamada YMA, Li C.-J, Uozumi Y, Moores A. Green Chem. 2013; 15: 2141
  • 34 Welther A, Jacobi von Wangelin A. Curr. Org. Chem. 2013; 17: 326
  • 35 Phua P.-H, Lefort L, Boogers J. AF, Tristany M, de Vries JG. Chem. Commun. (Cambridge) 2009; 3747
  • 36 Rangheard C, de Julián Fernández C, Phua P.-H, Hoorn J, Lefort L, de Vries JG. Dalton Trans. 2010; 39: 8464
  • 37 Kelsen V, Wendt B, Werkmeister S, Junge K, Beller M, Chaudret B. Chem. Commun. (Cambridge) 2013; 49: 3416
  • 38 Stein M, Wieland J, Steurer P, Tölle F, Mülhaupt R, Breit B. Adv. Synth. Catal. 2011; 353: 523
  • 39 Hudson R, Riviere A, Cirtiu CM, Luska KL, Moores A. Chem. Commun. (Cambridge) 2012; 48: 3360
  • 40 Kaushik M, Feng Y, Boyce N, Moores A, In Nanocatalysis in Ionic Liquids Prechtl MHG, ED. Wiley-VCH Weinheim, Germany 2016; p  3
  • 41 Mu X.-D, Evans DG, Kou Y. Catal. Lett. 2004; 97: 151
  • 42 Huang J, Jiang T, Han B, Gao H, Chang Y, Zhao G, Wu W. Chem. Commun. (Cambridge) 2003; 1654
  • 43 Umpierre AP, Machado G, Fecher GH, Morais J, Dupont J. Adv. Synth. Catal. 2005; 347: 1404
  • 44 Scheeren CW, Machado G, Dupont J, Fichtner PFP, Texeira SR. Inorg. Chem. 2003; 42: 4738
  • 45 Huang J, Jiang T, Gao H, Han B, Liu Z, Wu W, Chang Y, Zhao G. Angew. Chem. Int. Ed. 2004; 43: 1397
  • 46 Dupont J, Fonseca GS, Umpierre AP, Fichtner PFP, Teixeira SR. J. Am. Chem. Soc. 2002; 124: 4228
  • 47 Gladiali S, Alberico E. Chem. Soc. Rev. 2006; 35: 226
  • 48 Boldrini GP, Savoia D, Tagliavini E, Trombini C, Umani-Ronchi A. J. Org. Chem. 1985; 50: 3082
  • 49 Dhakshinamoorthy A, Pitchumani K. Tetrahedron Lett. 2008; 49: 1818
  • 50 Alonso F, Riente P, Yus M. Tetrahedron 2008; 64: 1847
  • 51 Alonso F, Riente P, Yus M. Tetrahedron 2009; 65: 10637
  • 52 Ito Y, Ohta H, Yamada YMA, Enoki T, Uozumi Y. Chem. Commun. (Cambridge) 2014; 50: 12123