Ultraschall Med 2018; 39(06): 659-666
DOI: 10.1055/a-0573-0908
Review
© Georg Thieme Verlag KG Stuttgart · New York

Ultrasound in the Re-Staging of Cervical Metastases after Chemoradiotherapy for Head and Neck Cancer

Ultraschall zum Re-Staging cervikaler Metastasen nach primärer Radiochemotherapie von Kopf- und Halskarzinomen
Julian Künzel
1   Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital of Mainz, Mainz, Germany
,
Sebastian Strieth
1   Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital of Mainz, Mainz, Germany
,
Gesine Wirth
2   Department of Neuroradiology, University Hospital of Mainz, Mainz, Germany
,
Alessandro Bozzato
3   Department of Otorhinolaryngology, Head & Neck Surgery, University Hospital Saarlanddical School, Homburg, Germany
› Author Affiliations
Further Information

Publication History

15 June 2017

24 January 2018

Publication Date:
20 September 2018 (online)

Abstract

High-resolution ultrasonography, including color duplex modes, is a well-established and proven imaging method that is used in addition to computed tomography for re-staging after primary nonsurgical therapy for head and neck cancer in many European countries. No evidence-based international re-staging guidelines are available. Decisions as to whether to carry out neck dissection after primary radiotherapy or chemoradiotherapy are often made in the relevant tumor boards and are therefore subject to variance. High-resolution ultrasonography clearly detects morphological changes such as intranodal necrotic areas and alterations in the hilar vascularization pattern. Another important aspect of ultrasonography is that it allows accurate check-ups on dynamic changes during the follow-up period. This article reviews the role of ultrasonography in the follow-up and re-staging of patients with neck disease after primary chemoradiotherapy.

Zusammenfassung

Die hochauflösende Sonografie inklusive Farbduplex in Kombination mit der Computertomografie (CT) ist in vielen europäischen Ländern eine gut etablierte und verlässliche Methode für das Re-Staging nach primär nicht-chirurgischer Therapie von Kopf- und Halskarzinomen. Es existieren jedoch keine international gültigen Leitlinien in Bezug auf das Re-Staging. Daher wird die Entscheidung zur Neck dissektion (ND) nach primärer Radio- oder Radiochemotherapie (RCT) oftmals in den entsprechenden Tumorboards getroffen. Die Indikationen unterliegen aber einer gewissen Variabilität. Die hochauflösende Sonografie ist besonders geeignet um morphologische Veränderungen intranodale Nekrosen und Veränderungen des hilären Vaskularisationsmusters eindeutig darzustellen. Ein weiterer wichtiger Aspekt der sonografischen Tumornachsorge ist die akkurate Kontrolle dynamischer Veränderungen. Im Rahmen dieses Übersichtsartikels soll die Rolle des Ultraschalls in der Nachsorge der Halslymphknoten nach abgeschlossener RCT eingeordnet werden.

 
  • References

  • 1 Marur S, Forastiere AA. Head and Neck Squamous Cell Carcinoma: Update on Epidemiology, Diagnosis, and Treatment. Mayo Clin Proc 2016; 91: 386-396
  • 2 Mendenhall WM, Million RR, Cassisi NJ. Squamous cell carcinoma of the head and neck treated with radiation therapy: the role of neck dissection for clinically positive neck nodes. Int J Radiat Oncol Biol Phys 1986; 12: 733-740
  • 3 Hermann RM, Christiansen H, Rodel RM. Lymph node positive head and neck carcinoma after curative radiochemotherapy: a long lasting debate on elective post-therapeutic neck dissections comes to a conclusion. Cancer Radiother 2013; 17: 323-331
  • 4 Ichimiya Y, Alluri K, Marcus C. et al. Imaging modality utilization trends in patients with stage III-IV oropharyngeal squamous cell carcinoma. Am J Nucl Med Mol Imaging 2015; 5: 154-161
  • 5 Mehanna H, Wong WL, McConkey CC. et al. PET-CT Surveillance versus Neck Dissection in Advanced Head and Neck Cancer. N Engl J Med 2016; 374: 1444-1454
  • 6 Leibel SA, Scott CB, Mohiuddin M. et al. The effect of local-regional control on distant metastatic dissemination in carcinoma of the head and neck: results of an analysis from the RTOG head and neck database. Int J Radiat Oncol Biol Phys 1991; 21: 549-556
  • 7 Brizel DM, Prosnitz RG, Hunter S. et al. Necessity for adjuvant neck dissection in setting of concurrent chemoradiation for advanced head-and-neck cancer. Int J Radiat Oncol Biol Phys 2004; 58: 1418-1423
  • 8 Hamoir M, Ferlito A, Schmitz S. et al. The role of neck dissection in the setting of chemoradiation therapy for head and neck squamous cell carcinoma with advanced neck disease. Oral oncology 2012; 48: 203-210
  • 9 Ganly I, Bocker J, Carlson DL. et al. Viable tumor in postchemoradiation neck dissection specimens as an indicator of poor outcome. Head Neck 2011; 33: 1387-1393
  • 10 Bozzato A, Loika A, Hornung J. et al. Comparison of conventional B-scan, tissue harmonic imaging, compound imaging and tissue harmonic compound imaging in neck lesion characterisation. Eur Arch Otorhinolaryngol 2010; 267: 1593-1598
  • 11 Alam F, Naito K, Horiguchi J. et al. Accuracy of sonographic elastography in the differential diagnosis of enlarged cervical lymph nodes: comparison with conventional B-mode sonography. Am J Roentgenol 2008; 191: 604-610
  • 12 Suh CH, Choi YJ, Baek JH. et al. The diagnostic performance of shear wave elastography for malignant cervical lymph nodes: A systematic review and meta-analysis. Eur Radiol 2017; 27: 222-230
  • 13 Cheng KL, Choi YJ, Shim WH. et al. Virtual Touch Tissue Imaging Quantification Shear Wave Elastography: Prospective Assessment of Cervical Lymph Nodes. Ultrasound Med Biol 2016; 42: 378-386
  • 14 Ying M, Bhatia KS, Lee YP. et al. Review of ultrasonography of malignant neck nodes: greyscale, Doppler, contrast enhancement and elastography. Cancer imaging: the official publication of the International Cancer Imaging Society 2014; 13: 658-669
  • 15 Desmots F, Fakhry N, Mancini J. et al. Shear Wave Elastography in Head and Neck Lymph Node Assessment: Image Quality and Diagnostic Impact Compared with B-Mode and Doppler Ultrasonography. Ultrasound Med Biol 2016; 42: 387-398
  • 16 Lo WC, Cheng PW, Wang CT. et al. Real-time ultrasound elastography: an assessment of enlarged cervical lymph nodes. European radiology 2013; 23: 2351-2357
  • 17 Mantsopoulos K, Klintworth N, Iro H. et al. Applicability of shear wave elastography of the major salivary glands: values in healthy patients and effects of gender, smoking and pre-compression. Ultrasound Med Biol 2015; 41: 2310-2318
  • 18 Poanta L, Serban O, Pascu I. et al. The place of CEUS in distinguishing benign from malignant cervical lymph nodes: a prospective study. Med Ultrason 2014; 16: 7-14
  • 19 Furukawa MK, Furukawa M. Diagnosis of lymph node metastases of head and neck cancer and evaluation of effects of chemoradiotherapy using ultrasonography. Int J Clin Oncol 2010; 15: 23-32
  • 20 Steinkamp HJ, Cornehl M, Hosten N. et al. Cervical lymphadenopathy: ratio of long- to short-axis diameter as a predictor of malignancy. Br J Radiol 1995; 68: 266-270
  • 21 Ying M, Bhatia KS, Lee YP. et al. Review of ultrasonography of malignant neck nodes: greyscale, Doppler, contrast enhancement and elastography. Cancer imaging: the official publication of the International Cancer Imaging Society 2013; 13: 658-669
  • 22 Bruneton JN, Roux P, Caramella E. et al. Ear, nose, and throat cancer: ultrasound diagnosis of metastasis to cervical lymph nodes. Radiology 1984; 152: 771-773
  • 23 Tschammler A, Ott G, Schang T. et al. Lymphadenopathy: differentiation of benign from malignant disease--color Doppler US assessment of intranodal angioarchitecture. Radiology 1998; 208: 117-123
  • 24 Eichhorn ME, Klotz LV, Luedemann S. et al. Vascular targeting tumor therapy: non-invasive contrast enhanced ultrasound for quantitative assessment of tumor microcirculation. Cancer Biol Ther 2010; 9: 794-802
  • 25 Zenk J, Bozzato A, Steinhart H. et al. Metastatic and inflammatory cervical lymph nodes as analyzed by contrast-enhanced color-coded Doppler ultrasonography: quantitative dynamic perfusion patterns and histopathologic correlation. Ann Otol Rhinol Laryngol 2005; 114: 43-47
  • 26 Zhao Y, Xi J, Zhao B. et al. Preliminary Evaluation of Virtual Touch Tissue Imaging Quantification for Differential Diagnosis of Metastatic and Nonmetastatic Cervical Lymph Nodes. J Ultrasound Med 2017; 36: 557-563
  • 27 King AD, Tse GM, Ahuja AT. et al. Necrosis in metastatic neck nodes: diagnostic accuracy of CT, MR imaging, and US. Radiology 2004; 230: 720-726
  • 28 Fleischman GM, Thorp BD, Difurio M. et al. Accuracy of Ultrasonography-Guided Fine-Needle Aspiration in Detecting Persistent Nodal Disease After Chemoradiotherapy. JAMA Otolaryngol Head Neck Surg 2016; 142: 377-382
  • 29 Pellini R, Manciocco V, Turri-Zanoni M. et al. Planned neck dissection after chemoradiotherapy in advanced oropharyngeal squamous cell cancer: the role of US, MRI and FDG-PET/TC scans to assess residual neck disease. J Craniomaxillofac Surg 2014; 42: 1834-1839
  • 30 Nishimura G, Yabuki K, Hata M. et al. Imaging strategy for response evaluation to chemoradiotherapy of the nodal disease in patients with head and neck squamous cell carcinoma. Int J Clin Oncol 2016; 21: 658-667
  • 31 Lo WC, Cheng PW, Shueng PW. et al. A Real-time Prediction Model for Post-irradiation Malignant Cervical Lymph Nodes. Clin Otolaryngol 2017; DOI: 10.1111/coa.12998. . [Epub ahead of print]
  • 32 Liao LJ, Wang CT, Young YH. et al. Real-time and computerized sonographic scoring system for predicting malignant cervical lymphadenopathy. Head Neck 2010; 32: 594-598
  • 33 Schouten CS, de Graaf P, Alberts FM. et al. Response evaluation after chemoradiotherapy for advanced nodal disease in head and neck cancer using diffusion-weighted MRI and 18F-FDG-PET-CT. Oral oncology 2015; 51: 541-547
  • 34 de Bondt RB, Nelemans PJ, Hofman PA. et al. Detection of lymph node metastases in head and neck cancer: a meta-analysis comparing US, USgFNAC, CT and MR imaging. Eur J Radiol 2007; 64: 266-272
  • 35 Lo WC, Cheng PW, Wang CT. et al. The Effect of Radiotherapy on Ultrasound-Guided Fine Needle Aspiration Biopsy and the Ultrasound Characteristics of Neck Lymph Nodes in Oral Cancer Patients after Primary Treatment. PLoS One 2016; 11: e0149346
  • 36 Eisenhauer EA, Therasse P, Bogaerts J. et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 2009; 45: 228-247
  • 37 Teymoortash A, Werner JA. Selective neck dissection in head and neck cancer. Laryngorhinootologie 2013; 92: 614-618 ; quiz 9–21
  • 38 Suarez C, Rodrigo JP, Robbins KT. et al. Superselective neck dissection: rationale, indications, and results. Eur Arch Otorhinolaryngol 2013; 270: 2815-2821
  • 39 Ong SC, Schoder H, Lee NY. et al. Clinical utility of 18F-FDG PET/CT in assessing the neck after concurrent chemoradiotherapy for Locoregional advanced head and neck cancer. J Nucl Med 2008; 49: 532-540
  • 40 Kendi AT, Brandon D, Switchenko J. et al. Head and neck PET/CT therapy response interpretation criteria (Hopkins criteria) – external validation study. Am J Nucl Med Mol Imaging 2017; 7: 174-180