Subscribe to RSS
DOI: 10.1055/a-0573-9199
Retinale Ziliopathien
CiliopathiesPublication History
eingereicht 23 August 2017
akzeptiert 02 February 2018
Publication Date:
13 March 2018 (online)

Zusammenfassung
Ziliopathien umfassen Erkrankungen und Fehlbildungen einzelner oder mehrerer Organe. Isolierte oder syndromale progressive Netzhautdystrophien stellen die häufigste okuläre Manifestation der Ziliopathien dar. Hierbei ist insbesondere die Struktur der Photorezeptoren mit dem Verbindungscilium (connecting cilium) bedeutend. Durch die dysfunktionalen Zilien besteht eine meist schwere Form der Netzhautdystrophie, der Leberʼschen kongenitalen Amaurose (LCA). Die häufigsten syndromalen Ziliopathien mit okulärer Manifestation sind das Bardet-Biedl-Syndrom (BBS) und das Usher-Syndrom. Die molekulargenetischen Analysen wiesen bisher eine Vielzahl von Genen für ziliäre Proteine nach. Mutationen in diesen Genen sind mit einer klinischen Heterogenität verbunden. Die Diagnose einer LCA oder einer Netzhautdystrophie im Kindesalter sollte immer eine multidisziplinäre Untersuchung und Betreuung einschließen. Eine kausale Therapie der Ziliopathien befindet sich in einem erfolgversprechenden Anfangsstadium, sodass zum jetzigen Zeitpunkt nur unterstützende und rehabilitierende Maßnahmen zur Verfügung stehen.
Abstract
Ciliopathies are disorders caused by ciliary dysfunction and can affect an organ system or tissues. Isolated or syndromic retinal dystrophies are the most common ocular manifestation of ciliopathies. The photoreceptor connecting cilium plays a leading role in these ciliopathy-related retinal dystrophies. Dysfunctional photoreceptor cilia cause the most severe type of retinal dystrophy: Leberʼs congenital amaurosis (LCA). The most common syndromic ciliopathies with an ocular manifestation are Bardet-Biedl syndrome (BBS) and Usher syndrome. Molecular-genetic analysis revealed a large number of cilia genes with a high phenotype heterogeneity. Diagnosis of ciliopathies require a multi-disciplinary approach. Causative treatment of ciliopathies is not yet available; therefore, rehabilitative and supportive treatment is mandatory.
-
Literatur
- 1 Cornillie FJ, Lauweryns JM, Corbeel L. Atypical bronchial cilia in children with recurrent respiratory tract infections. A comparative ultrastructural study. Pathol Res Pract 1984; 178: 595-604 doi:10.1016/S0344-0338(84)80093-X
- 2 Reiter JF, Leroux MR. Genes and molecular pathways underpinning ciliopathies. Nat Rev Mol Cell Biol 2017; 18: 533-547 doi:10.1038/nrm.2017.60
- 3 Eley L, Yates LM, Goodship JA. Cilia and disease. Curr Opin Genet Dev 2005; 15: 308-314 doi:10.1016/j.gde.2005.04.008
- 4 Gerdes JM, Davis EE, Katsanis N. The vertebrate primary cilium in development, homeostasis, and disease. Cell 2009; 137: 32-45 doi:10.1016/j.cell.2009.03.023
- 5 Watanabe D, Saijoh Y, Nonaka S. et al. The left-right determinant Inversin is a component of node monocilia and other 9 + 0 cilia. Development 2003; 130: 1725-1734
- 6 OʼToole ET, Giddings jr. TH, Dutcher SK. Understanding microtubule organizing centers by comparing mutant and wild-type structures with electron tomography. Methods Cell Biol 2007; 79: 125-143 doi:10.1016/S0091-679X(06)79005-7
- 7 Qin H. Regulation of intraflagellar transport and ciliogenesis by small G proteins. Int Rev Cell Mol Biol 2012; 293: 149-168 doi:10.1016/B978-0-12-394304-0.00010-5
- 8 May-Simera H, Nagel-Wolfrum K, Wolfrum U. Cilia – The sensory antennae in the eye. Prog Retin Eye Res 2017; 60: 144-180 doi:10.1016/j.preteyeres.2017.05.001
- 9 Luo N, Conwell MD, Chen X. et al. Primary cilia signaling mediates intraocular pressure sensation. Proc Natl Acad Sci U S A 2014; 111: 12871-12876 doi:10.1073/pnas.1323292111
- 10 Luo N, West CC, Murga-Zamalloa CA. et al. OCRL localizes to the primary cilium: a new role for cilia in Lowe syndrome. Hum Mol Genet 2012; 21: 3333-3344 doi:10.1093/hmg/dds163
- 11 Freund CL, Gregory-Evans CY, Furukawa T. et al. Cone-rod dystrophy due to mutations in a novel photoreceptor-specific homeobox gene (CRX) essential for maintenance of the photoreceptor. Cell 1997; 91: 543-553
- 12 Freund CL, Wang QL, Chen S. et al. De novo mutations in the CRX homeobox gene associated with Leber congenital amaurosis. Nat Genet 1998; 18: 311-312 doi:10.1038/ng0498-311
- 13 Sohocki MM, Sullivan LS, Mintz-Hittner HA. et al. A range of clinical phenotypes associated with mutations in CRX, a photoreceptor transcription-factor gene. Am J Hum Genet 1998; 63: 1307-1315 doi:10.1086/302101
- 14 Swaroop A, Wang QL, Wu W. et al. Leber congenital amaurosis caused by a homozygous mutation (R90 W) in the homeodomain of the retinal transcription factor CRX: direct evidence for the involvement of CRX in the development of photoreceptor function. Hum Mol Genet 1999; 8: 299-305
- 15 Sayer JA, Otto EA, OʼToole JF. et al. The centrosomal protein nephrocystin-6 is mutated in Joubert syndrome and activates transcription factor ATF4. Nat Genet 2006; 38: 674-681 doi:10.1038/ng1786
- 16 Chang B, Khanna H, Hawes N. et al. In-frame deletion in a novel centrosomal/ciliary protein CEP290/NPHP6 perturbs its interaction with RPGR and results in early-onset retinal degeneration in the rd16 mouse. Hum Mol Genet 2006; 15: 1847-1857 doi:10.1093/hmg/ddl107
- 17 Cideciyan AV, Aleman TS, Jacobson SG. et al. Centrosomal-ciliary gene CEP290/NPHP6 mutations result in blindness with unexpected sparing of photoreceptors and visual brain: implications for therapy of Leber congenital amaurosis. Hum Mutat 2007; 28: 1074-1083 doi:10.1002/humu.20565
- 18 Tsang WY, Bossard C, Khanna H. et al. CP110 suppresses primary cilia formation through its interaction with CEP290, a protein deficient in human ciliary disease. Dev Cell 2008; 15: 187-197 doi:10.1016/j.devcel.2008.07.004
- 19 Craige B, Tsao CC, Diener DR. et al. CEP290 tethers flagellar transition zone microtubules to the membrane and regulates flagellar protein content. J Cell Biol 2010; 190: 927-940 doi:10.1083/jcb.201006105
- 20 Valente EM, Silhavy JL, Brancati F. et al. Mutations in CEP290, which encodes a centrosomal protein, cause pleiotropic forms of Joubert syndrome. Nat Genet 2006; 38: 623-625 doi:10.1038/ng1805
- 21 den Hollander AI, Koenekoop RK, Yzer S. et al. Mutations in the CEP290 (NPHP6) gene are a frequent cause of Leber congenital amaurosis. Am J Hum Genet 2006; 79: 556-561 doi:10.1086/507318
- 22 Coppieters F, Lefever S, Leroy BP. et al. CEP290, a gene with many faces: mutation overview and presentation of CEP290base. Hum Mutat 2010; 31: 1097-1108 doi:10.1002/humu.21337
- 23 Perrault I, Delphin N, Hanein S. et al. Spectrum of NPHP6/CEP290 mutations in Leber congenital amaurosis and delineation of the associated phenotype. Hum Mutat 2007; 28: 416 doi:10.1002/humu.9485
- 24 Li Y, Wang H, Peng J. et al. Mutation survey of known LCA genes and loci in the Saudi Arabian population. Invest Ophthalmol Vis Sci 2009; 50: 1336-1343 doi:10.1167/iovs.08-2589
- 25 Seong MW, Kim SY, Yu YS. et al. Molecular characterization of Leber congenital amaurosis in Koreans. Mol Vis 2008; 14: 1429-1436
- 26 Simonelli F, Ziviello C, Testa F. et al. Clinical and molecular genetics of Leberʼs congenital amaurosis: a multicenter study of Italian patients. Invest Ophthalmol Vis Sci 2007; 48: 4284-4290 doi:10.1167/iovs.07-0068
- 27 Sundaresan P, Vijayalakshmi P, Thompson S. et al. Mutations that are a common cause of Leber congenital amaurosis in northern America are rare in southern India. Mol Vis 2009; 15: 1781-1787
- 28 Vallespin E, Lopez-Martinez MA, Cantalapiedra D. et al. Frequency of CEP290 c.2991_1655A>G mutation in 175 Spanish families affected with Leber congenital amaurosis and early-onset retinitis pigmentosa. Mol Vis 2007; 13: 2160-2162
- 29 Travaglini L, Brancati F, Attie-Bitach T. et al. Expanding CEP290 mutational spectrum in ciliopathies. Am J Med Genet A 2009; 149 A: 2173-2180 doi:10.1002/ajmg.a.33025
- 30 Hong DH, Pawlyk B, Sokolov M. et al. RPGR isoforms in photoreceptor connecting cilia and the transitional zone of motile cilia. Invest Ophthalmol Vis Sci 2003; 44: 2413-2421
- 31 Shu X, Black GC, Rice JM. et al. RPGR mutation analysis and disease: an update. Hum Mutat 2007; 28: 322-328 doi:10.1002/humu.20461
- 32 Schafer T, Putz M, Lienkamp S. et al. Genetic and physical interaction between the NPHP5 and NPHP6 gene products. Hum Mol Genet 2008; 17: 3655-3662 doi:10.1093/hmg/ddn260
- 33 Meindl A, Dry K, Herrmann K. et al. A gene (RPGR) with homology to the RCC1 guanine nucleotide exchange factor is mutated in X-linked retinitis pigmentosa (RP3). Nat Genet 1996; 13: 35-42 doi:10.1038/ng0596-35
- 34 Zhao Y, Hong DH, Pawlyk B. et al. The retinitis pigmentosa GTPase regulator (RPGR)- interacting protein: subserving RPGR function and participating in disk morphogenesis. Proc Natl Acad Sci U S A 2003; 100: 3965-3970 doi:10.1073/pnas.0637349100
- 35 Roepman R, Letteboer SJ, Arts HH. et al. Interaction of nephrocystin-4 and RPGRIP1 is disrupted by nephronophthisis or Leber congenital amaurosis-associated mutations. Proc Natl Acad Sci U S A 2005; 102: 18520-18525 doi:10.1073/pnas.0505774102
- 36 Mollet G, Salomon R, Gribouval O. et al. The gene mutated in juvenile nephronophthisis type 4 encodes a novel protein that interacts with nephrocystin. Nat Genet 2002; 32: 300-305 doi:10.1038/ng996
- 37 den Hollander AI, Koenekoop RK, Mohamed MD. et al. Mutations in LCA5, encoding the ciliary protein lebercilin, cause Leber congenital amaurosis. Nat Genet 2007; 39: 889-895 doi:10.1038/ng2066
- 38 Suspitsin EN, Imyanitov EN. Bardet-Biedl syndrome. Mol Syndromol 2016; 7: 62-71 doi:10.1159/000445491
- 39 Billingsley G, Bin J, Fieggen KJ. et al. Mutations in chaperonin-like BBS genes are a major contributor to disease development in a multiethnic Bardet-Biedl syndrome patient population. J Med Genet 2010; 47: 453-463 doi:10.1136/jmg.2009.073205
- 40 Mathur P, Yang J. Usher syndrome: Hearing loss, retinal degeneration and associated abnormalities. Biochim Biophys Acta 2015; 1852: 406-420 doi:10.1016/j.bbadis.2014.11.020
- 41 Weil D, Blanchard S, Kaplan J. et al. Defective myosin VIIA gene responsible for Usher syndrome type 1B. Nature 1995; 374: 60-61 doi:10.1038/374060a0
- 42 den Hollander AI, Roepman R, Koenekoop RK. et al. Leber congenital amaurosis: genes, proteins and disease mechanisms. Prog Retin Eye Res 2008; 27: 391-419 doi:10.1016/j.preteyeres.2008.05.003
- 43 Leroy BP. Leber congenital Amaurosis and early-onset retinal Dystrophy. In: Puech B, De Laey JJ, Holder GE. eds. Inherited chorioretinal Dystrophies. Berlin, Heidelberg: Springer; 2014: 121-134
- 44 Coppieters F, Casteels I, Meire F. et al. Genetic screening of LCA in Belgium: predominance of CEP290 and identification of potential modifier alleles in AHI1 of CEP290-related phenotypes. Hum Mutat 2010; 31: E1709-E1766 doi:10.1002/humu.21336
- 45 Hanein S, Perrault I, Gerber S. et al. Leber congenital amaurosis: comprehensive survey of the genetic heterogeneity, refinement of the clinical definition, and genotype-phenotype correlations as a strategy for molecular diagnosis. Hum Mutat 2004; 23: 306-317 doi:10.1002/humu.20010
- 46 Traboulsi EI. The Marshall M. Parks memorial lecture: making sense of early-onset childhood retinal dystrophies – the clinical phenotype of Leber congenital amaurosis. Br J Ophthalmol 2010; 94: 1281-1287 doi:10.1136/bjo.2009.165654
- 47 Pasadhika S, Fishman GA, Stone EM. et al. Differential macular morphology in patients with RPE65-, CEP290-, GUCY2D-, and AIPL1-related Leber congenital amaurosis. Invest Ophthalmol Vis Sci 2010; 51: 2608-2614 doi:10.1167/iovs.09-3734
- 48 Cideciyan AV, Rachel RA, Aleman TS. et al. Cone photoreceptors are the main targets for gene therapy of NPHP5 (IQCB1) or NPHP6 (CEP290) blindness: generation of an all-cone Nphp6 hypomorph mouse that mimics the human retinal ciliopathy. Hum Mol Genet 2011; 20: 1411-1423 doi:10.1093/hmg/ddr022
- 49 McEwen DP, Koenekoop RK, Khanna H. et al. Hypomorphic CEP290/NPHP6 mutations result in anosmia caused by the selective loss of G proteins in cilia of olfactory sensory neurons. Proc Natl Acad Sci U S A 2007; 104: 15917-15922 doi:10.1073/pnas.0704140104
- 50 Dharmaraj S, Li Y, Robitaille JM. et al. A novel locus for Leber congenital amaurosis maps to chromosome 6q. Am J Hum Genet 2000; 66: 319-326 doi:10.1086/302719
- 51 Mohamed MD, Topping NC, Jafri H. et al. Progression of phenotype in Leberʼs congenital amaurosis with a mutation at the LCA5 locus. Br J Ophthalmol 2003; 87: 473-475
- 52 Dryja TP, Adams SM, Grimsby JL. et al. Null RPGRIP1 alleles in patients with Leber congenital amaurosis. Am J Hum Genet 2001; 68: 1295-1298 doi:10.1086/320113
- 53 Koenekoop RK, Loyer M, Dembinska O. et al. Visual improvement in Leber congenital amaurosis and the CRX genotype. Ophthalmic Genet 2002; 23: 49-59
- 54 Berger W, Kloeckener-Gruissem B, Neidhardt J. The molecular basis of human retinal and vitreoretinal diseases. Prog Retin Eye Res 2010; 29: 335-375 doi:10.1016/j.preteyeres.2010.03.004
- 55 Jacobson SG, Yagasaki K, Feuer WJ. et al. Interocular asymmetry of visual function in heterozygotes of X-linked retinitis pigmentosa. Exp Eye Res 1989; 48: 679-691
- 56 Klein D, Ammann F. The syndrome of Laurence-Moon-Bardet-Biedl and allied diseases in Switzerland. Clinical, genetic and epidemiological studies. J Neurol Sci 1969; 9: 479-513
- 57 Deveault C, Billingsley G, Duncan JL. et al. BBS genotype-phenotype assessment of a multiethnic patient cohort calls for a revision of the disease definition. Hum Mutat 2011; 32: 610-619 doi:10.1002/humu.21480
- 58 Testa F, Melillo P, Bonnet C. et al. Clinical presentation and disease course of Usher syndrome because of mutations in Myo7a or Ush2a. Retina 2017; 37: 1581-1590 doi:10.1097/IAE.0000000000001389
- 59 Testa F, Melillo P, Rossi S. et al. Prevalence of macular abnormalities assessed by optical coherence tomography in patients with Usher syndrome. Ophthalmic Genet 2018; 39: 17-21 doi:10.1080/13816810.2017.1329445
- 60 Leroy BP. Usher Syndromes. In: Puech B, De Laey JJ, Holder GE. eds. Inherited chorioretinal Dystrophies. Berlin, Heidelberg: Springer; 2014: 143-150
- 61 Piazza L, Fishman GA, Farber M. et al. Visual acuity loss in patients with Usherʼs syndrome. Arch Ophthalmol 1986; 104: 1336-1339
- 62 Kletke S, Batmanabane V, Dai T. et al. The combination of vestibular impairment and congenital sensorineural hearing loss predisposes patients to ocular anomalies, including Usher syndrome. Clin Genet 2017; 92: 26-33 doi:10.1111/cge.12895
- 63 Ronquillo CC, Bernstein PS, Baehr W. Senior-Loken syndrome: a syndromic form of retinal dystrophy associated with nephronophthisis. Vision Res 2012; 75: 88-97 doi:10.1016/j.visres.2012.07.003
- 64 Salomon R, Saunier S, Niaudet P. Nephronophthisis. Pediatr Nephrol 2009; 24: 2333-2344 doi:10.1007/s00467-008-0840-z
- 65 Schild AM, Fricke J, Herkenrath P. et al. [Neuro-ophthalmological and ophthalmological findings in Joubert syndrome]. Klin Monatsbl Augenheilkd 2010; 227: 786-791 doi:10.1055/s-0029-1245735
- 66 Sturm V, Leiba H, Menke MN. et al. Ophthalmological findings in Joubert syndrome. Eye (Lond) 2010; 24: 222-225 doi:10.1038/eye.2009.116
- 67 Zallocchi M, Binley K, Lad Y. et al. EIAV-based retinal gene therapy in the shaker1 mouse model for usher syndrome type 1B: development of UshStat. PLoS One 2014; 9: e94272 doi:10.1371/journal.pone.0094272
- 68 Burnight ER, Wiley LA, Drack AV. et al. CEP290 gene transfer rescues Leber congenital amaurosis cellular phenotype. Gene Ther 2014; 21: 662-672 doi:10.1038/gt.2014.39
- 69 Collin RW, den Hollander AI, van der Velde-Visser SD. et al. Antisense oligonucleotide (AON)-based therapy for Leber congenital amaurosis caused by a frequent mutation in CEP290. Mol Ther Nucleic Acids 2012; 1: e14 doi:10.1038/mtna.2012.3