Diabetologie und Stoffwechsel 2018; 13(S 02): S144-S165
DOI: 10.1055/a-0598-0475
DDG-Praxisempfehlung
© Georg Thieme Verlag KG Stuttgart · New York

Therapie des Typ-2-Diabetes

Rüdiger Landgraf
1   Deutsche Diabetes Stiftung, München
,
Monika Kellerer
2   Zentrum für Innere Medizin I, Marienhospital Stuttgart
,
Jens Aberle
3   Sektion Endokrinologie und Diabetologie, Universitäres Adipositas Zentrum Hamburg, Universitätsklinikum Hamburg-Eppendorf
,
Eva-Maria Fach
4   Studienzentrum Stephanskirchen
,
Baptist Gallwitz
5   Medizinische Klinik IV, Universitätsklinikum Tübingen
,
Andreas Hamann
6   Medizinische Klinik IV, Hochtaunuskliniken gGmbH, Bad Homburg v. d. H.
,
Hans-Georg Joost
7   Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke (DIfE), Nuthetal
,
Harald Klein
8   Medizinische Klinik I, Berufsgenossenschaftliches Universitätsklinikum Bergmannsheil, Bochum
,
Dirk Müller-Wieland
9   Medizinische Klinik I, Universitätsklinikum RWTH Aachen, Aachen
,
Michael A. Nauck
10   Diabeteszentrum Bochum-Hattingen, St. Josef-Hospital, Ruhr-Universität, Bochum
,
Hans-Martin Reuter
11   Innere Medizin/Diabetologie, GP Ambulantes Medizinisches Zentrum, Jena
,
Stephan Schreiber
12   Diabeteszentrum Schreiber, Quickborn
,
Erhard Siegel
13   Abteilung für Innere Medizin – Gastroenterologie, Diabetologie/Endokrinologie und Ernährungsmedizin, St. Josefskrankenhaus Heidelberg GmbH, Heidelberg
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
31. Oktober 2018 (online)

Die Praxisempfehlungen der Deutschen Diabetes Gesellschaft (DDG) zusammen mit der Deutschen Gesellschaft für Innere Medizin (DGIM) lehnen sich eng an die Inhalte der Nationalen VersorgungsLeitlinie (NVL) „Therapie des Typ-2-Diabetes“ an. Umfangreiche Details einschließlich der wissenschaftlichen Belege finden Sie in der Langfassung der NVL [1]. Die in diesen Praxisempfehlungen abgebildeten Inhalte sind zum Teil die konsentierten Abschnitte der ganzen Arbeitsgruppe, die für die Erarbeitung der Nationalen VersorgungsLeitlinie verantwortlich war. Der aktuelle Therapiealgorithmus und dessen Begründungen wurden auf der Basis neuer Studien und Metaanalysen aktualisiert und von der DDG und der DGIM konsentiert.

Die Aktualisierung der im Jahr 2014 publizierten NVL hat 2017 begonnen. In der Neufassung wird es auch weitgehende Umstrukturierungen und Erweiterungen um die wichtigsten diabetesspezifischen und -assoziierten Komplikationen dieser NVL geben, um die Akzeptanz und die Praktikabilität der NVL wesentlich zu verbessern. Die Neuerscheinung dieser NVL ist für 2019 geplant.

 
  • Literatur

  • 1 Nationale Versorgungsleitlinien. www.versorgungsleitlinien.de
  • 2 Alberti KGMM, Eckel RH, Grundy SM. et al. Harmonizing the Metabolic Syndrome. Circulation 2009; 120: 1640-1645
  • 3 Heinemann L, Kaiser P, Freckmann G. et al. HbA1c-Messung in Deutschland: Ist die Qualität ausreichend für Verlaufskontrolle und Diagnose?. Diabetologie 2018; 13: 46-53
  • 4 Nauck M, Petermann A, Müller-Wieland D. et al. Definition, Klassifikation und Diagnostik des Diabetes Mellitus. Diabetologie 2018; 13 (Suppl. 02) S90-S96
  • 5 Landgraf R, Nauck M, Freckmann G. et al. Fallstricke bei der Diabetesdiagnostik: Wird zu lax mit Laborwerten umgegangen? Dtsch Med Wochenschr. 2018 , im Druck
  • 6 Nationale VersorgungsLeitlinie (NVL) Diabetes – Strukturierte Schulungsprogramme. 2018 www.leitlinien.de/nvl/diabetes/schulungsprogramme
  • 7 Wang R, Song Y, Yan Y. et al. Elevated serum uric acid and risk of cardiovascular or all-cause mortality in people with suspected or definite coronary artery disease: A meta-analysis. Atherosclerosis 2016; 254: 193-199
  • 8 Lawall H, Huppert P, Rümenapf G. et al. Periphere arterielle Verschlusskrankheit (PAVK), Diagnostik, Therapie und Nachsorge. AWMF Register Nr. 065 – 003; 2015
  • 9 Nationale VersorgungsLeitlinie Neuropathie bei Diabetes im Erwachsenenalter. 2016 www.leitlinien.de/mdb/downloads/nvl/diabetes-mellitus/dm-neuropathie
  • 10 Nationale VersorgungsLeitlinie Prävention und Therapie von Netzhautkomplikationen bei Diabetes. 2016 www.leitlinien.de/nvl/html/netzhautkomplikationen
  • 11 Nationale VersorgungsLeitlinie (NVL) Typ-2-Diabetes Präventions- und Behandlungsstrategien für Fußkomplikationen. 2018 www.leitlinien.de/nvl/diabetes/fusskomplikationen
  • 12 Roeb E, Steffen HM, Bantel H. et al. S2k Leitlinie: Nicht-alkoholische Fettlebererkrankungen. AWMF Register Nr. 021-025; 2015
  • 13 Nationale VersorgungsLeitlinie Nierenerkrankungen bei Diabetes im Erwachsenenalter. 2018 www.leitlinien.de/nvl/diabetes/nierenerkrankungen
  • 14 Nationale VersorgungsLeitlinie Chronische Herzinsuffizienz. 2018 https://www.leitlinien.de/nvl/html/nvl-chronische-herzinsuffizienz
  • 15 Nationale Versorgungs-Leitlinie Chronische Koronare Herzerkrankung (KHK). 2016 https://www.leitlinien.de/mdb/downloads/nvl/khk/ , www.leitlinien.de/nvl/html/nvl-chronische-khk
  • 16 Kempf K, Altpeter B, Berger J. et al. Efficacy of the telemedical lifestyle intervention program TeLiPro in advanced stages of type 2 diabetes: A randomized controlled trial. Diabetes Care 2017; 40 (07) 863-871
  • 17 Lean MEJ, Leslie WS, Barnes AC. et al. Primary care-led weight management for remission of type 2 diabetes (DiRECT): an open-label, cluster-randomised trial. Lancet 2018; 391: 541-551
  • 18 Adipositas – Prävention und Therapie. AWMF Register Nr. 050 – 001
  • 19 The Look AHEAD Research Group. Cardiovascular effects of intensive lifestyle intervention in type 2 diabetes. N Engl J Med 2013; 369: 145-154
  • 20 Unick JL, Gaussoin SA, Hill JO. et al. Objectively assessed physical activity and weight loss maintenance among individuals enrolled in a lifestyle intervention. Obesity (Silver Spring) 2017; 25 (11) 1903-1909
  • 21 Gregg EW, Lin J, Bardenheier B. et al. Impact of Intensive Lifestyle Intervention on Disability-Free Life Expectancy: The LookAHEAD Study. Diabetes Care 2018; 41: 1040-1048
  • 22 www.bfarm.de/SharedDocs/Risikoinformationen/Pharmakovigilanz/DE/RV_STP/m-r/metformin.html
  • 23 Lazarus B, Wu A, Shin JI. et al. Association of metformin use with risk of lactic acidosis across the range of kidney function. A community-based cohort tudy. JAMA Intern Med. 2018 ; published online June 4
  • 24 Griffin SJ, Leaver JK, Irving GJ. et al. Impact of metformin on cardiovascular disease: a meta-analysis of randomised trails among people with type 2 diabetes. Diabetologia 2017; 60: 1620-1629
  • 25 Palmer SC, Mavridis D, Nicolucci A. et al. Comparison of clinical outcomes and adverse events associated with glucose-lowering drugs in patients with type 2 diabetes. A meta-analysis. JAMA 2016; 316 (03) 313-324
  • 26 Mallik R, Chowdhury TA. Metformin in cancer. Diabetes Res Clin Pract 2018 May 26. pii: S0168-8227(17)31410-9
  • 27 Rados DV, Pinto LC, Remonti LR. et al. The association between sulfonylurea use and all-cause and cardiovascular mortality: A meta-analysis with trial sequential analysis of randomized clinical trials. PLoS Med 2016; 13 (06) e1002091
  • 28 Azoulay L, Suissa S. Sulfonylureas and the risks of cardiovascular events and death: A methodological meta-regression analysis of the observational studies. Diabetes Care 2017; 40: 706-714
  • 29 Bain S, Druyts E, Balijepalli C. et al. Cardiovascular events and all-cause mortality associated with sulphonylureas compared with other antihyperglycaemic drugs: A Bayesian meta-analysis of survival data. Diabetes Obes Metab 2017; 19 (03) 329-335
  • 30 Zhuang XD, He X, Yang DY. et al. Comparative cardiovascular outcomes in the era of novel anti-diabetic agents: a comprehensive network meta-analysis of 166371 participants from 170 randomized controlled trials. Cardiovasc Diabetol 2018; 17 (01) 79
  • 31 Powell WR, Christiansen CL, Miller DR. Meta-analysis of sulfonylurea therapy on long-term risk of mortality and cardiovascular events compared to other oral glucose-lowering treatments. Diabetes Ther. 2018 , published online May 28
  • 32 Chen K, Kang D, Yu M. et al. Direct head-to-head comparison of glycaemic durability of dipeptidyl peptidase-4 inhibitors and sulphonylureas in patients with type 2 diabetes mellitus: A meta-analysis of long-term randomized controlled trials. Diabetes Obes Metab 2018; 20: 1029-1033
  • 33 Simpson SH, Lee J, Choi S. et al. Mortality risk among sulfonylureas: ansystematic review and network meta-analysis. Lancet Diabetes Endocrinol 2015; 3 (01) 43-51
  • 34 Fadini GP, Bottigliengo D, D’Angelo F. et al. Comparative Effectiveness of DPP4 Inhibitors Versus Sulfonylurea for the Treatment of Type 2 Diabetes in Routine Clinical Practice: A Retrospective Multicenter Real-World Study. Diabetes Ther. 2018 , published online June 1
  • 35 Wang F, He Y, Zhang R. et al. Combination therapy of metformin plus dipeptidylpeptidase-4 inhibitor versus metformin plus sulfonylurea and their association with a decreased risk of cardiovascular disease in type 2 diabetes mellitus patients. Systematic review and meta-analysis. Medicine 2017; 96 (36) e7638
  • 36 Hemmingsen B, Schroll JB, Lund SS. et al. Sulphonylurea monotherapy for patients with type 2 diabetes mellitus. Cochrane Database Syst Rev 2013; Apr 30; (4): CD009008
  • 37 Hemmingsen B, Schroll JB, Jorn Wetterslev J. et al. Sulfonylurea versus metformin monotherapy in patients with type 2 diabetes: a Cochrane systematic review and meta-analysis of randomized clinical trials and trial sequential analysis. CMAJ Open 2014; 2 (03) E162-E175
  • 38 Sharma M, Beckley N, Nazareth I. et al. Effectiveness of sitagliptin compared to sulfonylureas for type 2 diabetes mellitus inadequately controlled on metformin: a systematic review and meta-analysis. BMJ Open 2017; 7: e017260
  • 39 Chen K, Kang D, Yu M. et al. Direct head-to-head comparison of glycaemic durability of dipeptidyl peptidase-4 inhibitors and sulphonylureas in patients with type 2 diabetes mellitus: A meta-analysis of long-term randomized controlled trials. Diabetes Obes Metab 2018; 20: 1029-1033
  • 40 Monami M, Ahrén B, Dicembrini I. et al. Dipeptidyl peptidase-4 inhibitors and cardiovascular risk: a meta-analysis of randomized clinical trials. Diabetes Obes Metab 2013; 15: 112-120
  • 41 Xu S, Zhang X, Tang L. et al. Cardiovascular effects of dipeptidylpeptidase-4 inhibitor in diabetic patients with and without established cardiovascular disease: a meta-analysis and systematic review. Postgrad Med 2017; 129: 205-215
  • 42 Zheng SL, Roddick AJ, Aghar-Jaffar R. et al. Association between use of sodium-glucose cotransporter 2 inhibitors, glucagon-like peptide 1 agonists, and dipeptidyl peptidase 4 inhibitors with all-cause mortality in patients with type 2 diabetes. A systematic review and meta-analysis. JAMA 2018; 319 (15) 1580-1591
  • 43 Li L, Li S, Deng K. et al. Dipeptidyl peptidase-4 inhibitors and risk of heart failure in type 2 diabetes: systematic review and meta-analysis of randomized and observational studies. BMJ 2016; 352: i610
  • 44 Guo WQ, Li L, Su Q. et al. Effect of dipeptidylpeptidase-4 inhibitors on heart failure: A Network Meta-Analysis. Value Health 2017; 20: 1427-1430
  • 45 Filion KB, Azoulay L, Platt RW. et al. A Multicenter Observational Study of Incretin-based Drugs and Heart Failure. N Engl J Med 2016; 374: 1145-1154
  • 46 Liu J, Li L, Deng K. et al. Incretin based treatments and mortality in patients with type 2 diabetes: systematic review and meta-analysis. BMJ 2017; 357: j2499
  • 47 Nyström T, Bodegard J, Nathanson D. et al. Second line initiation of insulin compared with DPP4 inhibitors after metformin monotherapy is associated with increased risk of all-cause mortality, cardiovascular events, and severe hypoglycemia. Diabetes Res Clin Pract 2017; 123: 199-208
  • 48 Tkáč I, Raz I. Combined analysis of three large interventional trials with gliptins indicates increased incidence of acute pancreatitis in patients with type 2 diabetes. Diabetes Care 2017; 40: 284-286
  • 49 Abrahami D, Douros A, Yin H. et al. Dipeptidyl peptidase-4 inhibitors and incidence of inflammatory bowel disease among patients with type 2 diabetes: population based cohort study. BMJ 2018; 360: k872
  • 50 Storgaard H, Gluud LL, Bennett C. et al. Benefits and Harms of Sodium-Glucose Co-Transporter 2 Inhibitors in Patients with Type 2 Diabetes: A Systematic Review and Meta-Analysis. PLoS One 2016; 11 (11) e0166125
  • 51 Müller-Wieland D, Kellerer M, Cypryk K. et al. Efficacy and safety of dapagliflozin or dapagliflozin plus saxagliptin versus glimepiride as add-on to metformin in patients with type 2 diabetes. Diabetes Obes Metab. 2018 ; publ. online Jun 27
  • 52 Aronson R, Frias J, Goldman A. et al. Long-term efficacy and safety of ertugliflozin monotherapy in patients with inadequately controlled T2DM despite diet and exercise: VERTIS MONO extension study. Diabetes Obes Metab 2018; 20: 1453-1460
  • 53 Pratley RE, Eldor R, Raji A. et al. Ertugliflozin plus sitagliptin versus either individual agent over 52 weeks in patients with type 2 diabetes mellitus inadequately controlled with metformin: The VERTIS FACTORIAL randomized trial. Diabetes Obes Metab 2018; 20: 1111-1120
  • 54 Fadini GP, Bonora BM, Avogaro A. SGLT2 inhibitors and diabetic ketoacidosis: data from the FDA Adverse Event Reporting System. Diabetologia 2017; 60: 1385-1389
  • 55 Fralick M, Schneeweiss S, Patorno E. Risk of diabetic ketoacidosis after initiation of an SGLT2 inhibitor. N Engl J Med 2017; 376: 2300-2303
  • 56 Monami M, Nreu B, Zannoni S. et al. Effects of SGLT2 inhibitors on diabetic ketoacidosis: A meta-analysis of randomised controlled trials. Diabetes Res Clin Pract 2017; 130: 53-60
  • 57 Zinman B, Wanner C, Lachin JM. et al. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N Engl J Med 2015; 373: 2117-2128
  • 58 Kosiborod M, Cavender MA, Fu AZ. et al. Lower risk of heart failure and death in patients initiated on sodium-glucose cotransporter-2 inhibitors versus other glucose-lowering drugs. CVD-REAL study. Circulation 2017; 136: 249-259
  • 59 Wanner C, Inzucchi SE, Zinman B. Empagliflozin and Progression of Kidney Disease in Type 2 Diabetes. N Engl J Med 2016; 375: 323-334
  • 60 Cherney DZI, Zinman B, Inzucchi SE. et al. Effects of empagliflozin on the urinary albumin-to-creatinine ratio in patients with type 2 diabetes and established cardiovascular disease: an exploratory analysis from the EMPA-REG OUTCOME randomised, placebo-controlled trial. Lancet Diabetes Endocrinol 2017; 5: 610-621
  • 61 Sattar N, McLaren J, Kristensen SL. et al. SGLT2 Inhibition and cardiovascular events: why did EMPA-REG Outcomes surprise and what were the likely mechanisms?. Diabetologia 2016; 59: 1333-1339
  • 62 Ferrannini E, Mark M, Mayoux E. et al. CV Protection in the EMPA-REG OUTCOME Trial: A “Thrifty Substrate” Hypothesis. Diabetes Care 2016; 39: 1108-1114
  • 63 https://www.gba.de/downloads/40-268-4342/2017-04-20_DMP-A-RL_Aenderung-Anlage-1_DMP-Diabetes-mellitus_TrG.pdf
  • 64 Neal B, Perkovic V, Mahaffey KW. et al. CANVAS Program Collaborative Group Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes. N Engl J Med 2017; 377: 644-657
  • 65 Ryan PB, Buse JB, Schuemie MJ. et al. Comparative effectiveness of canagliflozin, SGLT2 inhibitors and non-SGLT2 inhibitors on the risk of hospitalization for heart failure and amputation in patients with type 2 diabetes mellitus: A real-world meta-analysis of 4 observational databases (OBSERVE-4D). Diabetes Obes Metab 2018; 1-13
  • 66 Sonesson C, Johansson PA, Johnsson E. et al. Cardiovascular effects of dapagliflozin in patients with type 2 diabetes and different risk categories: a meta‑analysis. Cardiovasc Diabetol 2016; 15: 37
  • 67 Toulis KA, Willis BH, Marshall T. et al. All-cause mortality in patients with diabetes under treatment with dapagliflozin: A Population-based, open-cohort study in the health improvement network database. J Clin Endocrinol Metab 2017; 102: 1719-1725
  • 68 Persson F, Nystrom T, Jorgensen ME. et al. Dapagliflozin is associated with lower risk of cardiovascular events and all-cause mortality in people with type 2 diabetes (CVD-REAL Nordic) when compared with dipeptidyl peptidase-4 inhibitor therapy: A multinational observational study. Diabetes Obes Metab 2018; 20: 344-351
  • 69 Nystrom T, Bodegard J, Nathanson D. et al. Novel oral glucose lowering drugs are associated with lower risk of all-cause mortality, cardiovascular events and severe hypoglycaemia compared with insulin in patients with type 2 diabetes. Diabetes Obes Metab 2017; 19: 831-841
  • 70 Wu JH, Foote C, Blomster J. et al. Effects of sodium-glucose cotransporter-2 inhibitors on cardiovascular events, death, and major safety outcomes in adults with type 2 diabetes: a systematic review and meta-analysis. Lancet Diabetes Endocrinol 2016; 4: 411-419
  • 71 Monami M, Dicembrini I, Mannucci E. et al. Effects of SGLT2 inhibitors on mortality and cardiovascular events: a comprehensive meta-analysis of randomized controlled trials. Acta Diabetol 2017; 54: 19-36
  • 72 www.ema.europa.eu/ema/index.jsp?curl=pages/medicines/human/referrals/SGLT2_inhibitors_(previously_Canagliflozin)/human_referral_prac_000059.jsp&mid=WC0b01ac05805c5
  • 73 Scheen AJ. Does lower limb amputation concern all SGLT2 inhibitors?. Nat Rev Endocrinol 2018; 14 (06) 326-328
  • 74 Fioretto P, Del Prato S, Buse JB. et al. Efficacy and safety of dapagliflozin in patients with type 2 diabetes and moderate renal impairment (CKD Stage 3A): The DERIVE Study). Diabetes Obes Metab 2018; DOI: 10.1111/dom.13413.
  • 75 Inzucchi SE, Iliev H, Pfarr E. et al. Empagliflozin and assessment of lower limb amputations in the EMPA-REG OUTCOME trial. Diabetes Care 2018; 41: e4-e5
  • 76 Kohler S, Kaspers S, Salsali A. et al. Analysis of Fractures in Patients With Type 2 Diabetes Treated With Empagliflozin in Pooled Data From Placebo-Controlled Trials and a Head-to-Head Study Versus Glimepiride. Diabetes Care. 2018 ; published online June 15
  • 77 Levin PA, Nguyen H, Wittbrodt ET. et al. Glucagon-like peptide-1 receptor agonists: a systematic review of comparative effectiveness research. 2017; 10: 123-139
  • 78 Zinman B, Marso SP, Christiansen E. et al. Hypoglycemia, Cardiovascular Outcomes, and Death: The LEADER Experience. Diabetes Care 2018; 41 (08) 1783-1791
  • 79 Marso SP, Daniels GH, Brown-Frandsen K. et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med 2016; 375: 311-322
  • 80 Nauck MA, Tornøe K, Rasmussen S. et al. Cardiovascular outcomes in patients who experienced a myocardial infarction while treated with liraglutide versus placebo in the LEADER trial. Diab Vasc Dis Res. 2018 ; published online June 1
  • 81 Verma S, Bhatt DL, Bain SC. et al. Effect of liraglutide on cardiovascular events in patients with type 2 diabetes mellitus and polyvascular disease. Circulation 2018; 137 (20) 2179-2183
  • 82 Marso SP, Nauck MA, Monk Fries T. et al. Myocardial infarction subtypes in patients with type 2 diabetes mellitus and the effect of liraglutide therapy (from the LEADER Trial). Am J Cardiol 2018; 121: 1467-1470
  • 83 Mann JFE, Ørsted DD, Buse JB. Liraglutide and Renal Outcomes in Type 2 Diabetes. N Engl J Med 2017; 377: 839-848
  • 84 Mahmoud AN, Saad M, Mansoor H. et al. Cardiovascular safety of incretin-based therapy for type 2 diabetes: A meta-analysis of randomized trials. Int J Cardiol 2017; 230: 324-326
  • 85 Ferdinand KC, Botros FT, Atisso CM. et al. Cardiovascular safety for once‑weekly dulaglutide in type 2 diabetes: a pre-specified meta-analysis of prospectively adjudicated cardiovascular events. Cardiovasc Diabetol 2016; 15: 38-50
  • 86 Home PD, Ahrén B, Reusch JEB. et al. Three-year data from 5 HARMONY phase 3 clinical trials of albiglutide in type 2 diabetes mellitus: Long-term efficacy with or without rescue therapy. Diabetes Res Clin Pract 2017; 131: 49-60
  • 87 Ahrén B, Carr MC, Murphy K. et al. Albiglutide for the treatment of type 2 diabetes mellitus: An integrated safety analysis of the HARMONY phase 3 trials. Diabetes Res Clin Pract 2017; 126: 230-239
  • 88 Holman RR, Bethel MA, Mentz RJ. et al. Effects of once-weekly exenatide on cardiovascular outcomes in type 2 diabetes. N Engl J Med 2017; 377 (13) 1228-1239
  • 89 Bethel MA, Patel RA, Merrill P. et al. Cardiovascular outcomes with glucagon-like peptide-1 receptor agonists in patients with type 2 diabetes: a meta-analysis. Lancet Diabetes Endocrinol 2018; 6: 105-113
  • 90 Pratley RE, Aroda VR, Lingvay I. et SUSTAIN 7 investigators. Semaglutide versus dulaglutide once weekly in patients with type 2 diabetes (SUSTAIN 7): a randomised, open-label, phase 3b trial. Lancet Diabetes Endocrinol 2018; 6 (04) 275-286
  • 91 Marso SP, Bain SC, Consoli A. et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med 2016; 375 (19) 1834-1844
  • 92 Zheng SL, Roddick AJ, Aghar-Jaffar R. et al. Association between use of sodium-glucose cotransporter 2 inhibitors, glucagon-like peptide 1 agonists, and dipeptidyl peptidase 4 inhibitors with all-cause mortality in patients with type 2 diabetes. A systematic review and meta-analysis. JAMA 2018; 319 (15) 1580-1591
  • 93 Dicembrini I, Nreu B, Scatena A. et al. Microvascular effects of glucagon‑like peptide‑1 receptor agonists in type 2 diabetes: a meta‑analysis of randomized controlled trials. Acta Diabetol 2017; 54: 933-941
  • 94 Monami M, Nreu B, Scatena A. et al. Safety issues with glucagon-like peptide-1 receptor agonists (pancreatitis, pancreatic cancer and cholelithiasis): Data from randomized controlled trials. Diabetes Obes Metab 2017; 19 (09) 1233-1241
  • 95 Azoulay L, Filion KB, Platt RW. et al. Association Between Incretin-Based Drugs and the Risk of Acute Pancreatitis. JAMA Intern Med 2016; 176 (10) 1464-1473
  • 96 Wang T, Wang F, Gou Z. et al. Using real-world data to evaluate the association of incretin-based therapies with risk of acute pancreatitis: a meta-analysis of 1324515 patients from observational studies. Diabetes Obes Metabol 2015; 17: 32-41
  • 97 Russell-Jones D, Pouwer F, Khunti K. Identification of barriers to insulin therapy and approaches to overcoming them. Diabetes Obes Metab 2018; 20: 488-496
  • 98 Marso SP, McGuire DK, Zinman B. et al. Efficacy and safety of degludec versus glargine in type 2 diabetes. New Engl J Med 2017; 377 (08) 723-732
  • 99 Pieber TR, Marso SP, McGuire DK. et al. DEVOTE 3: temporal relationships between severe hypoglycaemia, cardiovascular outcomes and mortality. Diabetologia 2018; 61: 58-65
  • 100 Lau IT, Lee KF, So WY. et al. Insulin glargine 300 U/mL for basal insulin therapy in type 1 and type 2 diabetes mellitus. Diabetes Metab Syndr Obes 2017; 10: 273-284
  • 101 Ritzel R, Roussel R, Giaccari A. et al. Better glycaemic control and less hypoglycaemia with insulin glargine 300 U/mL vs glargine 100 U/mL: 1-year patient-level meta-analysis of the EDITION clinical studies in people with type 2 diabetes. Diabetes Obes Metab 2018; 20: 541-548
  • 102 Bonadonna RC, Renard E, Cheng A. et al. Switching to insulin glargine 300 U/mL: Is duration of prior basal insulin therapy important?. Diabetes Res Clin Pract 2018; 142: 19-25
  • 103 Linnebjerg H, Lam EC, Seger ME. et al. Comparison of the Pharmacokinetics and Pharmacodynamics of LY2963 016 Insulin Glargine and EU- and US-Approved Versions of Lantus Insulin Glargine in Healthy Subjects: Three Randomized Euglycemic Clamp Studies. Diabetes Care 2015; 38: 2226-2233
  • 104 Rosenstock J, Hollander P, Bhargava A. et al. Similar efficacy and safety of LY2963 016 insulin glargine and insulin glargine (Lantus®) in patients with type 2 diabetes who were insulin-naïve or previously treated with insulin glargine: a randomized, double-blind controlled trial (ELEMENT 2 study). Diabetes Obes Metabol 2015; 17: 734-741
  • 105 Yamada T, Kamata R, Ishinohachi K. et al. Biosimilar vs originator insulins: Systematic review and meta-analysis. Diabetes Obes Metab 2018; 20: 1787-1792
  • 106 But A, De Bruin ML, Bazelier MT. et al. Cancer risk among insulin users: comparing analogues with human insulin in the CARING five-country cohort study. Diabetologia 2017; 60: 1691-1703
  • 107 Gentile S, Fusco A, Colarusso S. et al. A randomized, open-label, comparative, crossover trial on preference, efficacy, and safety profiles of lispro insulin U-100 versus concentrated lispro insulin U-200 in patients with type 2 diabetes mellitus: a possible contribution to greater treatment adherence. Expert Opin Drug Saf 2018; 17 (05) 445-450
  • 108 Heise T, Hövelmann U, Brøndsted L. et al. Faster-acting insulin aspart: earlier onset of appearance and greater early pharmacokinetic and pharmacodynamic effects than insulin aspart. Diabetes Obes Metabol 2015; 17: 682-688
  • 109 Bowering K, Case C, Harvey J. et al. Faster Aspart Versus Insulin Aspart as Part of a Basal-Bolus Regimen in Inadequately Controlled Type 2 Diabetes: The onset 2 Trial. Diabetes Care 2017; 40 (07) 951-957
  • 110 Maiorino MI, Chiodini P, Bellastella G. et al. Insulin and Glucagon-Like Peptide1 Receptor Agonist Combination Therapy in Type 2 Diabetes: A systematic review and meta-analysis of randomized controlled trials. Diabetes Care 2017; 40: 614-624
  • 111 Guja C, Frías JP, Somogyi A. et al. Effect of exenatide QW or placebo, both added to titrated insulin glargine, in uncontrolled type 2 diabetes: The DURATION-7 randomized study. Diabetes Obes Metab 2018; 20: 1602-1614
  • 112 Rodbard HW, Lingvay I, Reed J. et al. Semaglutide added to basal insulin in type 2 diabetes (SUSTAIN 5): A randomized, controlled trial. J Clin Endocrinol Metab 2018; 103 (06) 2291-2301
  • 113 The SPRINT Research Group. A Randomized Trial of Intensive versus Standard Blood-Pressure Control. N Engl J Med 2015; 373: 2103-2116
  • 114 Düsing R. Therapieziele bei der Hypertoniebehandlung. Dtsch Med Wochenschr 2017; 142: 1420-1429
  • 115 Banegas JR, Ruilope LM, de la Sierra A. et al. Relationship between clinic and ambulatory blood-pressure measurements and mortality. N Engl J Med 2018; 378: 1509-1520
  • 116 Khunti K, Gomes MB, Pocock S. et al. Therapeutic inertia in the treatment of hyperglycaemia in patients with type 2 diabetes: A systematic review. Diabetes Obes Metab 2018; 20: 427-437
  • 117 Gough SC, Bode B, Woo V. et al. Efficacy and safety of a fixed-ratio combination of insulin degludec and liraglutide (IDegLira) compared with its components given alone: results of a phase 3, open-label, randomised, 26- week, treat-to-target trial in insulin-naive patients with type 2 diabetes. Lancet Diabet Endocrinol 2014; 2 (11) 885-893
  • 118 Diamant M, Nauck MA, Shaginian R. et al. Glucagon-Like Peptide 1 Receptor Agonist or Bolus Insulin With Optimized Basal Insulin in Type 2 Diabetes. Diabetes Care 2014; 37 (10) 2763-2773
  • 119 Ahmann A, Rodbard HW, Rosenstock J. et al. Efficacy and safety of liraglutide versus placebo added to basal insulin analogues (with or without metformin) in patients with type 2 diabetes: a randomized, placebo-controlled trial. Diabetes Obes Metab 2015; 17: 1056-1064
  • 120 Montvida O, Klein K, Kumar S. et al. Addition of or switch to insulin therapy in people treated with glucagon-like peptide-1 receptor agonists: A real-world study in 66 583 patients. Diabetes Obes Metab 2017; 19 (01) 108-117
  • 121 Billings LK, Doshi A, Gouet D. et al. Efficacy and Safety of IDegLira Versus Basal-Bolus Insulin Therapy in Patients With Type 2 Diabetes Uncontrolled on Metformin and Basal Insulin: The DUAL VII Randomized Clinical Trial. Diabetes Care 2018; 41 (05) 1009-1016
  • 122 Catapano AL, Graham I, De Backer G. et al. 2016 ESC/EAS Guidelines for the Management of Dyslipidaemias. Eur Heart J 2016; 37 (39) 2999-3058
  • 123 www.dgk.org
  • 124 www.hochdruckliga.de
  • 125 Landgraf R, Klauss V, Middeke M. et al. Perioperatives Management von Menschen mit Diabetes bei elektiven Eingriffen. Review. Teil 1. Diabetologe 2017;13:203–218; Teil 2. Diabetologe 2017;13:277–290