Subscribe to RSS
DOI: 10.1055/a-0632-4497
Familiäre Kardiomyopathien – von der Phänomenologie zur zielgerichteten Therapie
Familial Cardiomyopathies and the Road to Precision MedicinePublication History
Publication Date:
28 June 2018 (online)
Zusammenfassung
Kardiomyopathien stellen eine heterogene Gruppe von Herzmuskelerkrankungen dar, die häufig durch genetische Mechanismen bedingt sind oder in ihrem Verlauf durch solche beeinflusst werden. Im Bereich der genetischen Diagnostik spielen insbesondere die monogenen und syndromalen Formen eine wichtige Rolle, da durch die Identifikation einer pathogenen genetischen Variante nicht nur eine Bestätigung der Diagnose, sondern auch eine Abklärung auf Anlageträgerschaft und damit Erkrankungsrisiko bei Angehörigen möglich ist, sowie in bestimmten Fällen eine Vorhersage des zu erwartenden Krankheitsverlaufs erfolgen kann. Schon heute ergeben sich durch Nachweis von bestimmten Genvarianten therapeutische Konsequenzen, was durch die zunehmende Anzahl an molekularen Therapieentwicklungen in Zukunft deutlich zunehmen wird. Die genetische Diagnostik von Patienten und Angehörigen ist dabei eingebettet in ein strukturiertes Kardiomyopathie-Management und folgt 3 Hauptkonzepten: 1) Identifizierung und, falls möglich, Behandlung der Krankheitsursache, 2) Erkennung und Verringerung des Risikos für den plötzlichen Herztod und 3) Prävention oder Behandlung von Herzinsuffizienz und deren Folgen. In dem vorliegenden Übersichtsartikel sollen aktuelle Entwicklungen zu den überwiegend genetischen, strukturellen Kardiomyopathien reflektiert werden.
Abstract
Cardiomyopathies are a heterogeneous group of myocardial diseases that commonly have an underlying genetic cause or are influenced by genetic mechanisms. Genetic testing plays an increasingly important diagnostic role, especially in monogenic and syndromic forms of disease. It can aid clinicians through confirmation of diagnosis and offers the possibility of performing family cascade genetic testing. The identification of the underlying genetic cause can also give valuable insights on the probability of disease outbreak, clinical course and prognosis. At present, certain genetic mutations already warrant a therapeutic clinical consequence. This strategy is expected to become more important with the development of novel molecular therapy targets. Thus, current guidelines already incorporate genetic testing in the clinical management of familial cardiomyopathies, which accompanies the three main therapeutic concepts: 1) identification and treatment of an underlying cause, 2) reduction of sudden cardiac death risk and 3) prevention or treatment of heart failure and its consequences.
Durch methodische Weiterentwicklungen mittels Next-Generation-Sequencing-Gen-Panels konnte in den letzten Jahren die Anzahl an parallel untersuchten Genen deutlich gesteigert werden [1]. Gleichzeitig haben populationsgenetische Studien das Wissen über die natürliche Variabilität unserer Gene auf ein komplett anderes Niveau gehoben und hierdurch viele der früher als kausal angesehenen Gene bzw. Genvarianten falsifiziert. Durch eine standardisierte Interpretation von Genvarianten unter Berücksichtigung dieser Entwicklung ist es jedoch heute mehr denn je möglich, Patienten und deren Angehörigen eine zuverlässige Gendiagnostik anzubieten. Entsprechend wurde der Stellenwert der genetischen Testung und Familienabklärung bei Kardiomyopathien in nationalen und internationalen Leitlinien gestärkt. Gerade am Beispiel der dilatativen Kardiomyopathie (DCM) wird die rasante Entwicklung deutlich: Alleine durch Nachweis von Non-Sense-Varianten im Titin-Gen können heute 15 – 20% aller DCM-Fälle ätiologisch aufgeklärt werden. Durch Hinzunahme der weiteren Krankheitsgene erhöht sich die Aufklärungsquote auf über 50%. In neuesten Studien konnte die Bedeutung von strukturellen genetischen Varianten ([Abb. 1]) [2] und epigenetischen Faktoren untermauert werden [3].
Durch das zunehmende Verständnis über die genetischen Ursachen und molekularen Mechanismen der Kardiomyopathien werden neue Ansätze für eine zielgerichtete Behandlung möglich. Durch Nachweis von „Hochrisikovarianten“ zum Beispiel in den Genen Lamin A/C, RBM20, SCN5A und PLN können bereits jetzt wichtige therapeutische Konsequenzen, wie die Implantation eines Defibrillators, abgeleitet werden. Durch sogenannte „Precision Medicine“-Strategien werden in Zukunft detailliert phäno- und genotypisierte Patienten nach den zugrunde liegenden Mechanismen ihrer Kardiomyopathie-Unterform therapiert. Ein Beispiel stellt die selektive Inhibition der p38-MAP-Kinase dar, welche in einer Phase-II-Studie erfolgreich bei Patienten mit Varianten in Lamin A/C angewandt wurde. Aktuelle Phase-I/II/III-Studien laufen für zahlreiche dieser „Precision Medicine Trials“ bei genetischen Kardiomyopathien.
-
Literatur
- 1 Haas J, Frese KS, Peil B. et al. Atlas of the clinical genetics of human dilated cardiomyopathy. Eur Heart J 2015; 36: 1123-1135a
- 2 Haas J, Mester S, Lai A. et al. Genomic structural variations lead to dysregulation of important coding and non-coding RNA species in dilated cardiomyopathy. EMBO Mol Med 2018; 10: 107-120
- 3 Meder B, Haas J, Sedaghat-Hamedani F. et al. Epigenome-Wide Association Study Identifies Cardiac Gene Patterning and a Novel Class of Biomarkers for Heart Failure. Circulation 2017; 136: 1528-1544
- 4 Krehl L. Beitrag zur Kenntnis der idiopathischen Herzmuskelerkrankungen. Dtsch Arch Klin Med 1891; 48: 414-431
- 5 Jarcho S. Fiedler on acute interstitial myocarditis (1899). I. Am J Cardiol 1973; 32: 221-223
- 6 Brigden W. Uncommon Myocardial Diseases the Non-Coronary Cardiomyopathies*. Lancet 1957; 270: 1243-1249
- 7 Hershberger RE, Cowan J, Morales A. et al. Progress with genetic cardiomyopathies: screening, counseling, and testing in dilated, hypertrophic, and arrhythmogenic right ventricular dysplasia/cardiomyopathy. Circ Heart Fail 2009; 2: 253-261
- 8 Maron BJ, Towbin JA, Thiene G. et al. Contemporary definitions and classification of the cardiomyopathies: an American Heart Association Scientific Statement from the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; and Council on Epidemiology and Prevention. Circulation 2006; 113: 1807-1816
- 9 Elliott P, Andersson B, Arbustini E. et al. Classification of the cardiomyopathies: a position statement from the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur Heart J 2008; 29: 270-276
- 10 Thiene G, Corrado D, Basso C. Revisiting definition and classification of cardiomyopathies in the era of molecular medicine. Eur Heart J 2008; 29: 144-146
- 11 Ackerman MJ, Priori SG, Willems S. et al. HRS/EHRA expert consensus statement on the state of genetic testing for the channelopathies and cardiomyopathies: this document was developed as a partnership between the Heart Rhythm Society (HRS) and the European Heart Rhythm Association (EHRA). Europace 2011; 13: 1077-1109
- 12 Hershberger E, Lindenfeld J, Mestroni L. et al. Genetic evaluation of cardiomyopathy – a Heart Failure Society of America practice guideline. J Card Fail 2009; 15: 83-97
- 13 Charron P, Arad M, Arbustini E. et al. Genetic counselling and testing in cardiomyopathies: a position statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur Heart J 2010; 31: 2715-2726
- 14 Ashrafian H, Watkins H. Reviews of translational medicine and genomics in cardiovascular disease: new disease taxonomy and therapeutic implications cardiomyopathies: therapeutics based on molecular phenotype. J Am Coll Cardiol 2007; 49: 1251-1264
- 15 Ponikowski P, Voors AA, Anker SD. et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC)Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J 2016; 37: 2129-2200
- 16 Epstein AE, DiMarco JP, Ellenbogen KA. et al. 2012 ACCF/AHA/HRS focused update incorporated into the ACCF/AHA/HRS 2008 guidelines for device-based therapy of cardiac rhythm abnormalities: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines and the Heart Rhythm Society. Circulation 2013; 127: e283-e352
- 17 Authors/Task Force members Elliott PM, Anastasakis A, Borger MA. et al. 2014 ESC Guidelines on diagnosis and management of hypertrophic cardiomyopathy: the Task Force for the Diagnosis and Management of Hypertrophic Cardiomyopathy of the European Society of Cardiology (ESC). Eur Heart J 2014; 35: 2733-2779
- 18 Rapezzi C, Arbustini E, Caforio AL. et al. Diagnostic work-up in cardiomyopathies: bridging the gap between clinical phenotypes and final diagnosis. A position statement from the ESC Working Group on Myocardial and Pericardial Diseases. Eur Heart J 2013; 34: 1448-1458
- 19 Hershberger RE, Hedges DJ, Morales A. Dilated cardiomyopathy: the complexity of a diverse genetic architecture. Nat Rev Cardiol 2013; 10: 531-547
- 20 Meder B, Haas J, Keller A. et al. Targeted next-generation sequencing for the molecular genetic diagnostics of cardiomyopathies. Circ Cardiovasc Genet 2011; 4: 110-122
- 21 Kloos W, Katus HA, Meder B. Genetic cardiomyopathies. Lessons learned from humans, mice, and zebrafish. Herz 2012; 37: 612-617
- 22 Mestroni L, Rocco C, Gregori D. et al. Familial dilated cardiomyopathy: evidence for genetic and phenotypic heterogeneity. Heart Muscle Disease Study Group. J Am Coll Cardiol 1999; 34: 181-190
- 23 Burkett EL, Hershberger RE. Clinical and genetic issues in familial dilated cardiomyopathy. J Am Coll Cardiol 2005; 45: 969-981
- 24 Shaw T, Elliott P, McKenna WJ. Dilated cardiomyopathy: a genetically heterogeneous disease. Lancet 2002; 360: 654-655
- 25 McNally EM, Golbus JR, Puckelwartz MJ. Genetic mutations and mechanisms in dilated cardiomyopathy. J Clin Invest 2013; 123: 19-26
- 26 Herman DS, Lam L, Taylor MR. et al. Truncations of titin causing dilated cardiomyopathy. N Engl J Med 2012; 366: 619-628
- 27 Gerull B, Gramlich M, Atherton J. et al. Mutations of TTN, encoding the giant muscle filament titin, cause familial dilated cardiomyopathy. Nat Genet 2002; 30: 201-204
- 28 Li D, Morales A, Gonzalez-Quintana J. et al. Identification of novel mutations in RBM20 in patients with dilated cardiomyopathy. Clin Transl Sci 2010; 3: 90-97
- 29 Refaat MM, Lubitz SA, Makino S. et al. Genetic variation in the alternative splicing regulator RBM20 is associated with dilated cardiomyopathy. Heart Rhythm 2012; 9: 390-396
- 30 Kayvanpour E, Sedaghat-Hamedani F, Amr A. et al. Genotype-phenotype associations in dilated cardiomyopathy: meta-analysis on more than 8000 individuals. Clin Res Cardiol 2017; 106: 127-139
- 31 Taylor MR, Fain PR, Sinagra G. et al. Natural history of dilated cardiomyopathy due to lamin A/C gene mutations. J Am Coll Cardiol 2003; 41: 771-780
- 32 Sébillon P, Bouchier C, Bidot LD. et al. Expanding the phenotype of LMNA mutations in dilated cardiomyopathy and functional consequences of these mutations. J Med Genet 2003; 40: 560-567
- 33 Delmar M, McKenna WJ. The cardiac desmosome and arrhythmogenic cardiomyopathies: from gene to disease. Circ Res 2010; 107: 700-714
- 34 Norgett EE, Hatsell SJ, Carvajal-Huerta L. et al. Recessive mutation in desmoplakin disrupts desmoplakin-intermediate filament interactions and causes dilated cardiomyopathy, woolly hair and keratoderma. Hum Mol Genet 2000; 9: 2761-2766
- 35 van Spaendonck-Zwarts KY, van Rijsingen IA, van den Berg MP. et al. Genetic analysis in 418 index patients with idiopathic dilated cardiomyopathy: overview of 10 yearsʼ experience. Eur J Heart Fail 2013; 15: 628-636
- 36 Hershberger RE, Siegfried JD. Update 2011: clinical and genetic issues in familial dilated cardiomyopathy. J Am Coll Cardiol 2011; 57: 1641-1649
- 37 Hershberger RE, Parks SB, Kushner JD. et al. Coding sequence mutations identified in MYH7, TNNT2, SCN5A, CSRP3, LBD3, and TCAP from 313 patients with familial or idiopathic dilated cardiomyopathy. Clin Transl Sci 2008; 1: 21-26
- 38 Zaklyazminskaya E, Dzemeshkevich S. The role of mutations in the SCN5A gene in cardiomyopathies. Biochim Biophys Acta 2016; 1863: 1799-1805
- 39 Køber L, Thune JJ, Nielsen JC. et al. Defibrillator Implantation in Patients with Nonischemic Systolic Heart Failure. N Engl J Med 2016; 375: 1221-1230
- 40 Halliday BP, Gulati A, Ali A. et al. Association Between Midwall Late Gadolinium Enhancement and Sudden Cardiac Death in Patients With Dilated Cardiomyopathy and Mild and Moderate Left Ventricular Systolic Dysfunction. Circulation 2017; 135: 2106-2115
- 41 Di Marco A, Anguera I, Schmitt M. et al. Late Gadolinium Enhancement and the Risk for Ventricular Arrhythmias or Sudden Death in Dilated Cardiomyopathy: Systematic Review and Meta-Analysis. JACC Heart Fail 2017; 5: 28-38
- 42 Sedaghat-Hamedani F, Haas J, Zhu F. et al. Clinical genetics and outcome of left ventricular non-compaction cardiomyopathy. Eur Heart J 2017; 38: 3449-3460
- 43 Ouyang P, Saarel E, Bai Y. et al. A de novo mutation in NKX2.5 associated with atrial septal defects, ventricular noncompaction, syncope and sudden death. Clin Chim Acta 2011; 412: 170-175
- 44 Attenhofer Jost CH, Connolly HM, OʼLeary PW. et al. Left heart lesions in patients with Ebstein anomaly. Mayo Clin Proc 2005; 80: 361-368
- 45 van Waning JI, Caliskan K, Hoedemaekers YM. et al. Genetics, Clinical Features, and Long-Term Outcome of Noncompaction Cardiomyopathy. J Am Coll Cardiol 2018; 71: 711-722
- 46 Nijak A, Alaerts M, Kuiperi C. et al. Left ventricular non-compaction with Ebstein anomaly attributed to a TPM1 mutation. Eur J Med Genet 2018; 61: 8-10
- 47 Maron BJ, Maron MS, Semsarian C. Genetics of hypertrophic cardiomyopathy after 20 years: clinical perspectives. J Am Coll Cardiol 2012; 60: 705-715
- 48 Alcalai R, Seidman JG, Seidman CE. Genetic basis of hypertrophic cardiomyopathy: from bench to the clinics. J Cardiovasc Electrophysiol 2008; 19: 104-110
- 49 Maron BJ. Hypertrophic cardiomyopathy: a systematic review. JAMA 2002; 287: 1308-1320
- 50 Davies MJ, McKenna WJ. Hypertrophic cardiomyopathy–pathology and pathogenesis. Histopathology 1995; 26: 493-500
- 51 Sedaghat-Hamedani F, Katus HA, Meder B. Precision medicine for cardiovascular disease: Learning lessons from cardiomyopathies. Herz 2018; 43: 123-130
- 52 OʼMahony C, Jichi F, Pavlou M. et al. A novel clinical risk prediction model for sudden cardiac death in hypertrophic cardiomyopathy (HCM risk-SCD). Eur Heart J 2014; 35: 2010-2020
- 53 Gersh BJ, Maron BJ, Bonow RO. et al. 2011 ACCF/AHA guideline for the diagnosis and treatment of hypertrophic cardiomyopathy: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation 2011; 124: e783-e831
- 54 Marian AJ, Roberts R. The molecular genetic basis for hypertrophic cardiomyopathy. J Mol Cell Cardiol 2001; 33: 655-670
- 55 Sedaghat-Hamedani F, Kayvanpour E, Tugrul F. et al. Clinical Outcomes Associated with Sarcomere Mutations in Hypertrophic Cardiomyopathy – A Meta-analysis on 7675 Individuals. Clin Res Cardiol 2018; 107: 30-41
- 56 Charron P, Dubourg O, Desnos M. et al. Genotype-phenotype correlations in familial hypertrophic cardiomyopathy. A comparison between mutations in the cardiac protein-C and the beta-myosin heavy chain genes. Eur Heart J 1998; 19: 139-145
- 57 Brito D, Richard P, Isnard R. et al. Familial hypertrophic cardiomyopathy: the same mutation, different prognosis. Comparison of two families with a long follow-up. Rev Port Cardiol 2003; 22: 1445-1461
- 58 Arad M, Seidman JG, Seidman CE. Phenotypic diversity in hypertrophic cardiomyopathy. Hum Mol Genet 2002; 11: 2499-2506
- 59 Charron P, Dubourg O, Desnos M. et al. Clinical features and prognostic implications of familial hypertrophic cardiomyopathy related to the cardiac myosin-binding protein C gene. Circulation 1998; 97: 2230-2236
- 60 Ehlermann P, Weichenhan D, Zehelein J. et al. Adverse events in families with hypertrophic or dilated cardiomyopathy and mutations in the MYBPC3 gene. BMC Med Genet 2008; 9: 95
- 61 Li Q, Gruner C, Chan RH. et al. Genotype-positive status in patients with hypertrophic cardiomyopathy is associated with higher rates of heart failure events. Circ Cardiovasc Genet 2014; 7: 416-422
- 62 van Velzen HG, Vriesendorp PA, Oldenburg RA. et al. Value of Genetic Testing for the Prediction of Long-Term Outcome in Patients With Hypertrophic Cardiomyopathy. Am J Cardiol 2016; 118: 881-887
- 63 Tesson F, Dufour C, Moolman JC. et al. The influence of the angiotensin I converting enzyme genotype in familial hypertrophic cardiomyopathy varies with the disease gene mutation. J Mol Cell Cardiol 1997; 29: 831-838
- 64 Ho CY, Lakdawala NK, Cirino AL. et al. Diltiazem treatment for pre-clinical hypertrophic cardiomyopathy sarcomere mutation carriers: a pilot randomized trial to modify disease expression. JACC Heart Fail 2015; 3: 180-188
- 65 Ma H, Marti-Gutierrez N, Park SW. et al. Correction of a pathogenic gene mutation in human embryos. Nature 2017; 548: 413-419
- 66 Awad MM, Calkins H, Judge DP. Mechanisms of disease: molecular genetics of arrhythmogenic right ventricular dysplasia/cardiomyopathy. Nat Clin Pract Cardiovasc Med 2008; 5: 258-267
- 67 Marcus FI, McKenna WJ, Sherrill D. et al. Diagnosis of arrhythmogenic right ventricular cardiomyopathy/dysplasia: proposed modification of the Task Force Criteria. Eur Heart J 2010; 31: 806-814
- 68 Sen-Chowdhry S, Syrris P, McKenna WJ. Role of genetic analysis in the management of patients with arrhythmogenic right ventricular dysplasia/cardiomyopathy. J Am Coll Cardiol 2007; 50: 1813-1821
- 69 Sen-Chowdhry S, Syrris P, Ward D. et al. Clinical and genetic characterization of families with arrhythmogenic right ventricular dysplasia/cardiomyopathy provides novel insights into patterns of disease expression. Circulation 2007; 115: 1710-1720
- 70 Sen-Chowdhry S, Syrris P, Prasad SK. et al. Left-dominant arrhythmogenic cardiomyopathy: an under-recognized clinical entity. J Am Coll Cardiol 2008; 52: 2175-2187
- 71 Corrado D, Wichter T, Link MS. et al. Treatment of arrhythmogenic right ventricular cardiomyopathy/dysplasia: an international task force consensus statement. Eur Heart J 2015; 36: 3227-3237
- 72 Corrado D, Basso C, Thiene G. Arrhythmogenic right ventricular cardiomyopathy: diagnosis, prognosis, and treatment. Heart 2000; 83: 588-595
- 73 Breithardt G, Wichter T, Haverkamp W. et al. Implantable Cardioverter-Defibrillator Therapy in Patients with Arrhythmogenic Right-Ventricular Cardiomyopathy, Long Qt Syndrome, or No Structural Heart-Disease. Am Heart J 1994; 127: 1151-1158
- 74 Corrado D, Leoni L, Link MS. et al. Implantable cardioverter-defibrillator therapy for prevention of sudden death in patients with arrhythmogenic right ventricular cardiomyopathy/dysplasia. Circulation 2003; 108: 3084-3091
- 75 James CA, Bhonsale A, Tichnell C. et al. Exercise increases age-related penetrance and arrhythmic risk in arrhythmogenic right ventricular dysplasia/cardiomyopathy-associated desmosomal mutation carriers. J Am Coll Cardiol 2013; 62: 1290-1297
- 76 Sen-Chowdhry S, Morgan RD, Chambers JC. et al. Arrhythmogenic cardiomyopathy: etiology, diagnosis, and treatment. Annu Rev Med 2010; 61: 233-253
- 77 Pinamonti B, Brun F, Mestroni L. et al. Arrhythmogenic right ventricular cardiomyopathy: From genetics to diagnostic and therapeutic challenges. World J Cardiol 2014; 6: 1234-1244
- 78 Gersh BJ, Maron BJ, Bonow RO. et al. 2011 ACCF/AHA guideline for the diagnosis and treatment of hypertrophic cardiomyopathy: executive summary: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation 2011; 124: 2761-2796