Planta Med 2018; 84(15): 1068-1093
DOI: 10.1055/a-0633-9492
Reviews
Georg Thieme Verlag KG Stuttgart · New York

A Pharmacological Update of Ellagic Acid

José-Luis Ríos
1   Departament de Farmacologia, Facultat de Farmàcia, Universitat de València, Burjassot, Spain
,
Rosa M. Giner
1   Departament de Farmacologia, Facultat de Farmàcia, Universitat de València, Burjassot, Spain
,
Marta Marín
2   Departamento de Farmacia, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-CEU, CEU Universities, Alfara del Patriarca, Valencia, Spain
,
M. Carmen Recio
1   Departament de Farmacologia, Facultat de Farmàcia, Universitat de València, Burjassot, Spain
› Author Affiliations
Further Information

Publication History

received 13 March 2018
revised 27 April 2018

accepted 17 May 2018

Publication Date:
30 May 2018 (online)

Abstract

Ellagic acid is a common metabolite present in many medicinal plants and vegetables. It is present either in free form or as part of more complex molecules (ellagitannins), which can be metabolized to liberate ellagic acid and several of its metabolites, including urolithins. While ellagic acidʼs antioxidant properties are doubtless responsible for many of its pharmacological activities, other mechanisms have also been implicated in its various effects, including its ability to reduce the lipidemic profile and lipid metabolism, alter pro-inflammatory mediators (tumor necrosis factor-α, interleukin-1β, interleukin-6), and decrease the activity of nuclear factor-κB while increasing nuclear factor erythroid 2-related factor 2 expression. These events play an important role in ellagic acidʼs anti-atherogenic, anti-inflammatory, and neuroprotective effects. Several of these activities, together with the effect of ellagic acid on insulin, glycogen, phosphatases, aldose reductase, sorbitol accumulation, advanced glycation end-product formation, and resistin secretion, may explain its effects on metabolic syndrome and diabetes. In addition, results from recent research have increased the interest in ellagic acid, both as a potential protective agent of the liver and skin and as a potential anticancer agent, due to the specific mechanisms affecting cell proliferation, apoptosis, DNA damage, and angiogenesis and its aforementioned anti-inflammatory properties. Taken together, these effects make ellagic acid a highly interesting compound that may contribute to different aspects of health; however, more studies are needed, especially on the compoundʼs pharmacokinetic profile. In this review, we selected papers published from 2005 to the present.

 
  • References

  • 1 PubChem, National Center for Biotechnology Information, U. S. National Library of Medicine. Ellagic acid. 8600 Rockville Pike, Bethesda, MD20894, USA. Available at: https://pubchem.ncbi.nlm.nih.gov/compound/ellagic_acid Accessed December 14, 2017
  • 2 Rossi M, Erlebacher J, Zacharias DE, Carrell HL, Iannucci B. The crystal and molecular structure of ellagic acid dihydrate: a dietary anti-cancer agent. Carcinogenesis 1991; 12: 2227-2232
  • 3 Clifford MN, Scalbert A. Ellagitannins-nature, occurrence and dietary burden. J Sci Food Agric 2000; 80: 1118-1125
  • 4 The National Toxicology Program (NTP). Ellagic acid. Chemical properties. 1992. Available at: https://tools.niehs.nih.gov/cebs3/ntpviews/index.cfm?action=testarticle.properties&cas_number=476-66-4 Accessed December 14, 2017
  • 5 CAMEO. Ellagic acid. Chemical Datasheet. CAMEO, Chemicals version 2.7 rev 1. Available at: https://cameochemicals.noaa.gov/chemical/20329 Accessed December 14, 2017
  • 6 Derosa G, Maffioli P, Sahebkar A. Ellagic acid and its role in chronic diseases. Adv Exp Med Biol 2016; 928: 473-479
  • 7 Landete JM. Ellagitannins, ellagic acid and their derived metabolites: a review about source, metabolism, functions and health. Food Res Int 2011; 44: 1150-1160
  • 8 Larrosa M, García-Conesa MT, Espín JC, Tomás-Barberán FA. Ellagitannins, ellagic acid and vascular health. Mol Aspects Med 2010; 31: 513-539
  • 9 Siraj MA, Shilpi JA, Hossain MG, Uddin SJ, Islam MK, Jahan IA, Hossain H. Anti-inflammatory and antioxidant activity of Acalypha hispida leaf and analysis of its major bioactive polyphenols by HPLC. Adv Pharm Bull 2016; 6: 275-283
  • 10 Aoyama H, Sakagami H, Hatano T. Three new flavonoids, proanthocyanidin, and accompanying phenolic constituents from Feijoa sellowiana . Biosci Biotechnol Biochem 2018; 82: 31-41
  • 11 Jaramillo-García V, Trindade C, Lima E, Guecheva TN, Villela I, Martinez-Lopez W, Corrêa DS, Ferraz ABF, Moura S, Sosa MQ, Da Silva J, Henriques JAP. Chemical characterization and cytotoxic, genotoxic, and mutagenic properties of Baccharis trinervis (Lam, Persoon) from Colombia and Brazil. J Ethnopharmacol 2018; 213: 210-220
  • 12 Yang R, Guan Y, Zhou J, Sun B, Wang Z, Chen H, He Z, Jia A. Phytochemicals from Camellia nitidissima Chi flowers reduce the pyocyanin production and motility of Pseudomonas aeruginosa PAO1. Front Microbiol 2018; 8: 2640
  • 13 Campos JF, Espindola PPT, Torquato HFV, Vital WD, Justo GZ, Silva DB, Carollo CA, de Picoli Souza K, Paredes-Gamero EJ, Dos Santos EL. Leaf and root extracts from Campomanesia adamantium (Myrtaceae) promote apoptotic death of leukemic cells via activation of intracellular calcium and caspase-3. Front Pharmacol 2017; 8: 466
  • 14 Yang LP, Gu XL, Chen JX, Yang J, Tan SY, Duan WJ. Chemical constituents from Canarium album Raeusch and their anti-influenza A virus activities. J Nat Med 2018; 72: 808-815
  • 15 Hafsa J, Hammi KM, Khedher MRB, Smach MA, Charfeddine B, Limem K, Majdoub H. Inhibition of protein glycation, antioxidant and antiproliferative activities of Carpobrotus edulis extracts. Biomed Pharmacother 2016; 84: 1496-1503
  • 16 Tuyen PT, Xuan TD, Tu Anh TT, Mai Van T, Ahmad A, Elzaawely AA, Khanh TD. Weed suppressing potential and isolation of potent plant growth inhibitors from Castanea crenata Sieb. et Zucc. Molecules 2018; 23: E345
  • 17 Karimi E, Ghorbani Nohooji M, Habibi M, Ebrahimi M, Mehrafarin A, Khalighi-Sigaroodi F. Antioxidant potential assessment of phenolic and flavonoid rich fractions of Clematis orientalis and Clematis ispahanica (Ranunculaceae). Nat Prod Res 2017;
  • 18 Shendge AK, Basu T, Chaudhuri D, Panja S, Mandal N. In vitro antioxidant and antiproliferative activities of various solvent fractions from Clerodendrum viscosum leaves. Pharmacogn Mag 2017; 13 (Suppl. 02) S344-S353
  • 19 Huang J, Zhang Y, Dong L, Gao Q, Yin L, Quan H, Chen R, Fu X, Lin D. Ethnopharmacology, phytochemistry, and pharmacology of Cornus officinalis Sieb. et Zucc. J Ethnopharmacol 2018; 213: 280-301
  • 20 Cho CH, Jang H, Lee M, Kang H, Heo HJ, Kim DO. Sea buckthorn (Hippophae rhamnoides L.) leaf extracts protect neuronal PC-12 cells from oxidative stress. J Microbiol Biotechnol 2017; 27: 1257-1265
  • 21 Vieira GS, Marques ASF, Machado MTC, Silva VM, Hubinger MD. Determination of anthocyanins and non-anthocyanin polyphenols by ultra performance liquid chromatography/electrospray ionization mass spectrometry (UPLC/ESI-MS) in jussara (Euterpe edulis) extracts. J Food Sci Technol 2017; 54: 2135-2144
  • 22 Falcão TR, de Araújo AA, Soares LAL, de Moraes Ramos RT, Bezerra ICF, Ferreira MRA, de Souza Neto MA, Melo MCN, de Araújo jr. RF, de Aguiar Guerra ACV, de Medeiros JS, Guerra GCB. Crude extract and fractions from Eugenia uniflora Linn leaves showed anti-inflammatory, antioxidant, and antibacterial activities. BMC Complement Altern Med 2018; 18: 84
  • 23 Lee IS, Jung SH, Kim JS. Polyphenols from Euphorbia pekinensis inhibit AGEs formation in vitro and vessel dilation in larval zebrafish in vivo . Planta Med 2018; 84: 176-181
  • 24 Ton That Q, Nguyen Thien TV, Dang HP, Le Hoan N, Vo LKT, Nguyen MHD, Ngu NT, Nguyen TS, Hansen PE. Chemical constituents of Geum urbanum L. roots. Nat Prod Res 2018;
  • 25 Ochoa-Pacheco A, Escalona Arranz JC, Beaven M, Peres-Roses R, Gámez YM, Camacho-Pozo MI, Maury GL, de Macedo MB, Cos P, Tavares JF, Da Silva MS. Bioassay-guided in vitro study of the antimicrobial and cytotoxic properties of the leaves from Excoecaria lucida Sw. Pharmacognosy Res 2017; 9: 396-400
  • 26 Vu D, Vo P, Coggeshall M, Lin CH. Identification and characterization of phenolic compounds in black walnut kernels. J Agric Food Chem 2018; 66: 4503-4511
  • 27 Pereira LOM, Vilegas W, Tangerina MMP, Arunachalam K, Balogun SO, Orlandi-Mattos PE, Colodel EM, Martins DTO. Lafoensia pacari A. St.-Hil.: wound healing activity and mechanism of action of standardized hydroethanolic leaves extract. J Ethnopharmacol 2018; 219: 337-350
  • 28 de Oliveira LM, Porte A, de Oliveira Godoy RL, da Costa Souza M, Pacheco S, de Araujo Santiago MCP, Gouvêa ACMS, da Silva de Mattos do Nascimento L, Borguini RG. Chemical characterization of Myrciaria floribunda (H. West ex Willd) fruit. Food Chem 2018; 248: 247-252
  • 29 Díaz-de-Cerio E, Arráez-Román D, Segura-Carretero A, Ferranti P, Nicoletti R, Perrotta GM, Gómez-Caravaca AM. Establishment of pressurized-liquid extraction by response surface methodology approach coupled to HPLC-DAD-TOF-MS for the determination of phenolic compounds of myrtle leaves. Anal Bioanal Chem 2018; 410: 3547-3557
  • 30 Hernández C, Ascacio-Valdés J, De la Garza H, Wong-Paz J, Aguilar CN, Martínez-Ávila GC, Castro-López C, Aguilera-Carbó A. Polyphenolic content, in vitro antioxidant activity and chemical composition of extract from Nephelium lappaceum L. (Mexican rambutan) husk. Asian Pac J Trop Med 2017; 10: 1201-1205
  • 31 Ifeanacho MO, Ikewuchi CC, Ikewuchi JC. Investigation of the profile of phenolic compounds in the leaves and stems of Pandiaka heudelotii using gas chromatography coupled with flame ionization detector. Food Sci Nutr 2016; 5: 646-652
  • 32 Navarro M, Moreira I, Arnaez E, Quesada S, Azofeifa G, Vargas F, Alvarado D, Chen P. Flavonoids and ellagitannins characterization, antioxidant and cytotoxic activities of Phyllanthus acuminatus Vahl. Plants (Basel) 2017; 6: E62
  • 33 Hu Q, Yuan B, Xiao H, Zhao L, Wu X, Rakariyatham K, Zhong L, Han Y, Muinde Kimatu B, Yang W. Polyphenols-rich extract from Pleurotus eryngii with growth inhibitory of HCT116 colon cancer cells and anti-inflammatory function in RAW264.7 cells. Food Funct 2018; 9: 1601-1611
  • 34 Inada KOP, Duarte PA, Lapa J, Miguel MAL, Monteiro M. Jabuticaba (Myrciaria jaboticaba) juice obtained by steam-extraction: phenolic compound profile, antioxidant capacity, microbiological stability, and sensory acceptability. J Food Sci Technol 2018; 55: 52-61
  • 35 Neves NA, Stringheta PC, Gómez-Alonso S, Hermosín-Gutiérrez I. Flavonols and ellagic acid derivatives in peels of different species of jabuticaba (Plinia spp.) identified by HPLC-DAD-ESI/MSn. Food Chem 2018; 252: 61-71
  • 36 Mazzarino L, da Silva Pitz H, Lorenzen Voytena AP, Dias Trevisan AC, Ribeiro-Do-Valle RM, Maraschin M. Jaboticaba (Plinia peruviana) extract nanoemulsions: development, stability, and in vitro antioxidant activity. Drug Dev Ind Pharm 2018; 44: 643-651
  • 37 Morikawa T, Imura K, Akagi Y, Muraoka O, Ninomiya K. Ellagic acid glycosides with hepatoprotective activity from traditional Tibetan medicine Potentilla anserina . J Nat Med 2018; 72: 317-325
  • 38 Sobral-Souza CE, Silva ARP, Leite NF, Costa JGM, Menezes IRA, Cunha FAB, Rolim LA, Coutinho HDM. LC-MS analysis and cytoprotective effect against the mercurium and aluminium toxicity by bioactive products of Psidium brownianum Mart. ex DC. J Hazard Mater 2018;
  • 39 Odubanjo VO, Ibukun EO, Oboh G, Adefegha SA. Aqueous extracts of two tropical ethnobotanicals (Tetrapleura tetraptera and Quassia undulata) improved spatial and non-spatial working memories in scopolamine-induced amnesic rats: influence of neuronal cholinergic and antioxidant systems. Biomed Pharmacother 2018; 99: 198-204
  • 40 Ghadage DM, Kshirsagar PR, Pai SR, Chavan JJ. Extraction efficiency, phytochemical profiles and antioxidative properties of different parts of Saptarangi (Salacia chinensis L.) – an important underutilized plant. Biochem Biophys Rep 2017; 12: 79-90
  • 41 Pinto J, Spínola V, Llorent-Martínez EJ, Fernández-de Córdova ML, Molina-García L, Castilho PC. Polyphenolic profile and antioxidant activities of Madeiran elderberry (Sambucus lanceolata) as affected by simulated in vitro digestion. Food Res Int 2017; 100: 404-410
  • 42 Im SH, Wang Z, Lim SS, Lee OH, Kang IJ. Bioactivity-guided isolation and identification of anti-adipogenic compounds from Sanguisorba officinalis . Pharm Biol 2017; 55: 2057-2064
  • 43 Cui Q, Du R, Anantpadma M, Schafer A, Hou L, Tian J, Davey RA, Cheng H, Rong L. Identification of ellagic acid from plant Rhodiola rosea L. as an anti-Ebola virus entry inhibitor. Viruses 2018; 10: E152
  • 44 de Britto Policarpi P, Turcatto L, Demoliner F, Ferrari RA, Bascuñan VLAF, Ramos JC, Jachmanián I, Vitali L, Micke GA, Block JM. Nutritional potential, chemical profile and antioxidant activity of Chichá (Sterculia striata) nuts and its by-products. Food Res Int 2018; 106: 736-744
  • 45 Sathyanarayanan S, Chandran R, Thankarajan S, Abrahamse H, Thangaraj P. Phytochemical composition, antioxidant and anti-bacterial activity of Syzygium calophyllifolium Walp. fruit. J Food Sci Technol 2018; 55: 341-350
  • 46 Gajera HP, Gevariya SN, Hirpara DG, Patel SV, Golakiya BA. Antidiabetic and antioxidant functionality associated with phenolic constituents from fruit parts of indigenous black jamun (Syzygium cumini L.) landraces. J Food Sci Technol 2017; 54: 3180-3191
  • 47 Kalra P, Karwasra R, Gupta YK, Ray SB, Singh S. Terminalia chebula supplementation attenuates cisplatin-induced nephrotoxicity in Wistar rats through modulation of apoptotic pathway. Nat Prod Res 2018;
  • 48 Cesário FRAS, de Albuquerque TR, de Lacerda GM, de Oliveira MRC, Rodrigues LB, Martins AOBPB, Boligon AA, Júnior LJQ, de Souza Araújo AA, Vale ML, Coutinho HDM, de Menezes IRA. Phytochemical profile and mechanisms involved in the anti-nociception caused by the hydroethanolic extract obtained from Tocoyena formosa (Cham. & Schltdl.) K. Schum (Jenipapo-bravo) leaves in mice. Biomed Pharmacother 2018; 97: 321-329
  • 49 Sabir SM, Rocha JBT, Boligon AA, Athayde ML. Hepatoprotective activity and phenolic profile of Zanthoxylum alatum Roxb. fruit extract. Pak J Pharm Sci 2017; 30: 1551-1556
  • 50 García-Niño W, Zazueta C. Ellagic acid: pharmacological activities and molecular mechanisms involved in liver protection. Pharmacol Res 2015; 97: 84-103
  • 51 de Oliveira MR. The effects of ellagic acid upon brain cells: a mechanistic view and future directions. Neurochem Res 2016; 41: 1219-1228
  • 52 Ratnam DV, Ankola DD, Bhardwaj V, Sahana DK, Kumar MN. Role of antioxidants in prophylaxis and therapy: a pharmaceutical perspective. J Control Release 2006; 113: 189-207
  • 53 Salem AM, Mohammaden TF, Mohamed MAM, Mohamed EA, Hasan HF. Ellagic and ferulic acids alleviate gamma radiation and aluminium chloride-induced oxidative damage. Life Sci 2016; 160: 2-11
  • 54 Priyadarsini KI, Khopde SM, Kumar SS, Mohan H. Free radical studies of ellagic acid, a natural phenolic antioxidant. J Agric Food Chem 2002; 50: 2200-2206
  • 55 Galano A, Francisco-Márquez M, Pérez-González A. Ellagic acid: an unusually versatile protector against oxidative stress. Chem Res Toxicol 2014; 27: 904-918
  • 56 Tiwari MK, Mishra PC. Modeling the scavenging activity of ellagic acid and its methyl derivatives towards hydroxyl, methoxy, and nitrogen dioxide radicals. J Mol Model 2013; 19: 5445-5456
  • 57 Marković Z, Milenković D, Đorović J, Marković JMD, Lučić B, Amić D. A DFT and PM6 study of free radical scavenging activity of ellagic acid. Monatsh Chem 2013; 144: 803-812
  • 58 Ahmed T, Setzer WN, Nabavi SF, Orhan IE, Braidy N, Sobarzo-Sanchez E, Nabavi SM. Insights into effects of ellagic acid on the nervous system: a mini review. Curr Pharm Des 2016; 22: 1350-1360
  • 59 Iino T, Nakahara K, Miki W, Kiso Y, Ogawa Y, Kato S, Takeuchi K. Less damaging effect of whisky in rat stomachs in comparison with pure ethanol. Role of ellagic acid, the nonalcoholic component. Digestion 2001; 64: 214-221
  • 60 Iino T, Tashima K, Umeda M, Ogawa Y, Takeeda M, Takata K. Takeuchi K. Effect of ellagic acid on gastric damage induced in ischemic rat stomachs following ammonia or reperfusion. Life Sci 2002; 70: 1139-1150
  • 61 Hassoun EA, Walter AC, Alsharif NZ, Stohs SJ. Modulation of TCDD-induced fetotoxicity and oxidative stress in embryonic and placental tissues of C57BL/6J mice by vitamin E succinate and ellagic acid. Toxicology 1997; 124: 27-37
  • 62 Yu YM, Chang WC, Wu CH, Chiang SY. Reduction of oxidative stress and apoptosis in hyperlipidemic rabbits by ellagic acid. J Nutr Biochem 2005; 16: 675-681
  • 63 Böyük A, Önder A, Kapan M, Gümüş M, Firat U, Başarali MK, Alp H. Ellagic acid ameliorates lung injury after intestinal ischemia-reperfusion. Pharmacogn Mag 2011; 7: 224-228
  • 64 Uzar E, Alp H, Cevik MU, Fırat U, Evliyaoglu O, Tufek A, Altun Y. Ellagic acid attenuates oxidative stress on brain and sciatic nerve and improves histopathology of brain in streptozotocin-induced diabetic rats. Neurol Sci 2012; 33: 567-574
  • 65 Kilic I, Yeşiloğlu Y, Bayrak Y. Spectroscopic studies on the antioxidant activity of ellagic acid. Spectrochim Acta A Mol Biomol Spectrosc 2014; 130: 447-452
  • 66 Roche A, Ross E, Walsh N, OʼDonnell K, Williams A, Klapp M, Fullard N, Edelstein S. Representative literature on the phytonutrients category: phenolic acids. Crit Rev Food Sci Nutr 2015; 57: 1089-1096
  • 67 Hassoun EA, Vodhanel J, Abushaban A. The modulatory effects of ellagic acid and vitamin E succinate on TCDD-induced oxidative stress in different brain regions of rats after subchronic exposure. J Biochem Mol Toxicol 2004; 18: 196-203
  • 68 Lee WJ, Ou HC, Hsu WC, Chou MM, Tseng JJ, Hsu SL, Tsai KL, Sheu WH. Ellagic acid inhibits oxidized LDL-mediated LOX-1 expression, ROS generation, and inflammation in human endothelial cells. J Vasc Surg 2010; 52: 1290-1300
  • 69 Berkban T, Boonprom P, Bunbupha S, Welbat JU, Kukongviriyapan U, Kukongviriyapan V, Pakdeechote P, Prachaney P. Ellagic acid prevents L-NAME-induced hypertension via restoration of eNOS and p47phox expression in rats. Nutrients 2015; 7: 5265-5280
  • 70 Mira L, Fernandez MT, Santos M, Rocha R, Florêncio MH, Jennings KR. Interactions of flavonoids with iron and copper ions: a mechanism for their antioxidant activity. Free Radic Res 2002; 36: 1199-1208
  • 71 Craft BD, Kerrihard AL, Amarowicz R, Pegg RB. Phenol-based antioxidants and the in vitro methods used for their assessment. Compr Rev Food Sci Food Saf 2012; 11: 148-173
  • 72 Ahmed S, Rahman A, Saleem M, Athar M, Sultana S. Ellagic acid ameliorates nickel induced biochemical alterations: diminution of oxidative stress. Hum Exp Toxicol 1999; 18: 691-698
  • 73 Yang CS, Tzou BC, Liu YP, Tsai MJ, Shyue SK, Tzeng SF. Inhibition of cadmium-induced oxidative injury in rat primary astrocytes by the addition of antioxidants and the reduction of intracellular calcium. J Cell Biochem 2008; 103: 825-834
  • 74 Saha P, Yeoh BS, Singh R, Chandrasekar B, Vemula PK, Haribabu B, Vijay-Kumar M, Jala VR. Gut microbiota conversion of dietary ellagic acid into bioactive phytoceutical urolithin A inhibits heme peroxidases. PLoS One 2016; 11: e0156811
  • 75 Dalvi LT, Moreira DC, Andrade jr. R, Ginani J, Alonso A, Hermes-Lima M. Ellagic acid inhibits iron-mediated free radical formation. Spectrochim Acta A Mol Biomol Spectrosc 2017; 173: 910-917
  • 76 Srinivasan P, Vadhanam MV, Arif JM, Gupta RC. A rapid screening assay for antioxidant potential of natural and synthetic agents in vitro . Int J Oncol 2002; 20: 983-986
  • 77 Sai-Kato K, Umemura T, Takagi A, Hasegawa R, Tanimura A, Kurokawa Y. Pentachlorophenol-induced oxidative DNA damage in mouse liver and protective effect of antioxidants. Food Chem Toxicol 1995; 33: 877-882
  • 78 Teel RW, Martin RM, Allahyari R. Ellagic acid metabolism and binding to DNA in organ explant cultures of the rat. Cancer Lett 1987; 36: 203-211
  • 79 Thulstrup PW, Thormann T, Spanget-Larsen J, Bisgaard HC. Interaction between ellagic acid and calf thymus DNA studied with flow linear dichroism UV-VIS spectroscopy. Biochem Biophys Res Commun 1999; 265: 416-421
  • 80 Spencer WA, Jeyabalan J, Kichambre S, Gupta RC. Oxidatively generated DNA damage after Cu(II) catalysis of dopamine and related catecholamine neurotransmitters and neurotoxins: role of reactive oxygen species. Free Radic Biol Med 2011; 50: 139-147
  • 81 Li W, Kong AN. Molecular mechanisms of Nrf2-mediated antioxidant response. Mol Carcinog 2009; 48: 91-104
  • 82 Baek B, Lee SH, Kim K, Lim HW, Lim CJ. Ellagic acid plays a protective role against UV-B-induced oxidative stress by up-regulating antioxidant components in human dermal fibroblasts. Korean J Physiol Pharmacol 2016; 20: 269-277
  • 83 Hseu YC, Chou CW, Senthil Kumar KJ, Fu KT, Wang HM, Hsu LS, Kuo YH, Wu CR, Chen SC, Yang HL. Ellagic acid protects human keratinocyte (HaCaT) cells against UVA-induced oxidative stress and apoptosis through the upregulation of the HO-1 and Nrf-2 antioxidant genes. Food Chem Toxicol 2012; 50: 1245-1255
  • 84 Gu L, Deng WS, Liu Y, Jiang CH, Sun LC, Sun XF, Xu Q, Zhou H. Ellagic acid protects lipopolysaccharide/D-galactosamine-induced acute hepatic injury in mice. Int Immunopharmacol 2014; 22: 341-345
  • 85 Ding Y, Zhang B, Zhou K, Chen M, Wang M, Jia Y, Song Y, Li Y, Wen A. Dietary ellagic acid improves oxidant-induced endothelial dysfunction and atherosclerosis: role of Nrf2 activation. Int J Cardiol 2014; 175: 508-514
  • 86 Shepherd AG, Manson MM, Ball HWL, McLellan LI. Regulation of rat glutamate-cysteine ligase (γ-glutamylcysteine synthetase) subunits by chemopreventive agents and in aflatoxin B1-induced preneoplasia. Carcinogenesis 2000; 21: 1827-1834
  • 87 Hayes JD, McLellan LI. Glutathione and glutathione-dependent enzymes represent a co-ordinately regulated defence against oxidative stress. Free Radic Res 1999; 31: 273-300
  • 88 Mishra S, Vinayak M. Ellagic acid inhibits PKC signaling by improving antioxidant defense system in murine T cell lymphoma. Mol Biol Rep 2014; 41: 4187-4197
  • 89 Ding Y, Wang L, Song J, Zhou S. Protective effects of ellagic acid against tetrachloride-induced cirrhosis in mice through the inhibition of reactive oxygen species formation and angiogenesis. Exp Ther Med 2017; 14: 3375-3380
  • 90 Biswas S. Does the interdependence between oxidative stress and inflammation explain the antioxidant paradox?. Oxid Med Cell Longev 2016; 2016: 1-9
  • 91 Chao C, Mong M, Chan K, Yin M. Anti-glycative and anti-inflammatory effects of caffeic acid and ellagic acid in kidney of diabetic mice. Mol Nutr Food Res 2010; 54: 388-395
  • 92 Mo J, Panichayupakaranant P, Kaewnopparat N, Songkro S, Reanmongkol W. Topical anti-inflammatory potential of standardized pomegranate rind extract and ellagic acid in contact dermatitis. Phytother Res 2014; 28: 629-632
  • 93 Yılmaz E, Bozdağ Z, Ibiloğlu I, Arıkanoğlu Z, Yazgan Ü, Kaplan I, Gümüş M, Atamanalp SS. Therapeutic effects of ellagic acid on L-arginin induced acute pancreatitis. Acta Cir Bras 2016; 31: 396-401
  • 94 Masamune A, Satoh M, Kikuta K, Suzuki N, Satoh K, Shimosegawa T. Ellagic acid blocks activation of pancreatic stellate cells. Biochem Pharmacol 2005; 70: 869-878
  • 95 González-Sarrías A, Larrosa M, Tomás-Barberán F, Dolara P, Espín J. NF-κB-dependent anti-inflammatory activity of urolithins, gut microbiota ellagic acid-derived metabolites, in human colonic fibroblasts. Br J Nutr 2010; 104: 503-512
  • 96 Cornélio Favarin D, Martins Teixeira M, Lemos de Andrade E, de Freitas Alves C, Lazo Chica JE, Artério Sorgi C, Faccioli LH, Paula Rogerio A. Anti-inflammatory effects of ellagic acid on acute lung injury induced by acid in mice. Mediators Inflamm 2013; 2013: 1-13
  • 97 Marín M, Giner RM, Ríos JL, Recio MC. Intestinal anti-inflammatory activity of ellagic acid in the acute and chronic dextrane sulfate sodium models of mice colitis. J Ethnopharmacol 2013; 150: 925-934
  • 98 Romier B, Van De Walle J, During A, Larondelle Y, Schneider Y. Modulation of signalling nuclear factor-κB activation pathway by polyphenols in human intestinal Caco-2 cells. Br J Nutr 2008; 100: 542-551
  • 99 Rosillo M, Sánchez-Hidalgo M, Cárdeno A, Aparicio-Soto M, Sánchez-Fidalgo S, Villegas I, de la Lastra CA. Dietary supplementation of an ellagic acid-enriched pomegranate extract attenuates chronic colonic inflammation in rats. Pharmacol Res 2012; 66: 235-242
  • 100 Allahverdi T, Allahverdi E, Yayla S, Deprem T, Merhan O, Vural S. The comparison of the effects of ellagic acid and diclofenac sodium on intra-abdominal adhesion: an in vivo study in the rat model. Int Surg 2014; 99: 543-550
  • 101 Zhou E, Fu Y, Wei Z, Yang Z. Inhibition of allergic airway inflammation through the blockage of NF-κB activation by ellagic acid in an ovalbumin-induced mouse asthma model. Food Funct 2014; 5: 2106-2112
  • 102 Ghasemi-Niri S, Maqbool F, Baeeri M, Gholami M, Abdollahi M. Phosalone-induced inflammation and oxidative stress in the colon: evaluation and treatment. World J Gastroenterol 2016; 22: 4999
  • 103 Chun K. Nitric oxide induces expression of cyclooxygenase-2 in mouse skin through activation of NF-κB. Carcinogenesis 2003; 25: 445-454
  • 104 El-Shitany N, El-Bastawissy E, El-desoky K. Ellagic acid protects against carrageenan-induced acute inflammation through inhibition of nuclear factor kappa B, inducible cyclooxygenase and proinflammatory cytokines and enhancement of interleukin-10 via an antioxidant mechanism. Int Immunopharmacol 2014; 19: 290-299
  • 105 Karlsson S, Nånberg E, Fjaeraa C, Wijkander J. Ellagic acid inhibits lipopolysaccharide-induced expression of enzymes involved in the synthesis of prostaglandin E2 in human monocytes. Br J Nutr 2010; 103: 1102-1109
  • 106 Chang WC, Yu YM, Chiang SY, Tseng CY. Ellagic acid suppresses oxidised low-density lipoprotein-induced aortic smooth muscle cell proliferation: studies on the activation of extracellular signal-regulated kinase 1/2 and proliferating cell nuclear antigen expression. Br J Nutr 2008; 99: 709-714
  • 107 Hwang D, Jang BC, Yu G, Boudreau M. Expression of mitogen-inducible cyclooxygenase induced by lipopolysaccharide: mediation through both mitogen-activated protein kinase and NF-κB signaling pathways in macrophages. Biochem Pharmacol 1997; 54: 87-96
  • 108 Scherle PA, Ma W, Lim H, Dey SK, Trzaskos JM. Regulation of cyclooxygenase-2 induction in the mouse uterus during decidualization. An event of early pregnancy. J Biol Chem 2000; 275: 37086-37092
  • 109 Arbabi S, Rosengart MR, Garcia I, Maier RV. Hypertonic saline solution induces prostacyclin production by increasing cyclooxygenase-2 expression. Surgery 2000; 128: 198-205
  • 110 Masuko-Hongo K, Berenbaum F, Humbert L, Salvat C, Goldring MB, Thirion S. Up-regulation of microsomal prostaglandin E synthase 1 in osteoarthritic human cartilage: critical roles of the ERK-1/2 and p38 signaling pathways. Arthritis Rheum 2004; 50: 2829-2838
  • 111 Umesalma S, Sudhandiran G. Differential inhibitory effects of the polyphenol ellagic acid on inflammatory mediators NF-κB, iNOS, COX-2, TNF-α and IL-6 in 1, 2-dimethylhydrazine-induced rat colon carcinogenesis. Basic Clin Pharmacol Toxicol 2010; 107: 650-655
  • 112 Mansouri MT, Hemmati AA, Naghizadeh B, Mard SA, Rezaie A, Ghorbanzadeh B. A study of the mechanisms underlying the anti-inflammatory effect of ellagic acid in carrageenan-induced paw edema in rats. Indian J Pharmacol 2015; 47: 292-298
  • 113 Papoutsi Z, Kassi E, Chinou I, Halabalaki M, Skaltsounis L, Moutsatsou P. Walnut extract (Juglans regia L.) and its component ellagic acid exhibit anti-inflammatory activity in human aorta endothelial cells and osteoblastic activity in the cell line KS483. Br J Nutr 2007; 99: 715-722
  • 114 Yu Y, Wang Z, Liu C, Chen C. Ellagic acid inhibits IL-1β-induced cell adhesion molecule expression in human umbilical vein endothelial cells. Br J Nutr 2007; 97: 692-698
  • 115 Alves CdF, Angeli G, Favarin D, de Andrade EL, Lazo Chica J, Faccioli L, da Silva PR, Rogerio AdP. The effects of proresolution of ellagic acid in an experimental model of allergic airway inflammation. Mediators Inflamm 2013; 2013: 1-9
  • 116 Sarkar S, Siddiqui A, Mazumder S, De R, Saha S, Banerjee C, Iqbal MS, Adhikari S, Alam A, Roy S, Bandyopadhyay U. Ellagic acid, a dietary polyphenol, inhibits tautomerase activity of human macrophage migration inhibitory factor and its pro-inflammatory responses in human peripheral blood mononuclear cells. J Agric Food Chem 2015; 63: 4988-4998
  • 117 Seo CS, Jeong SJ, Yoo SR, Lee NR, Shin HK. Quantitative analysis and in vitro anti-inflammatory effects of gallic acid, ellagic acid, and quercetin from Radix Sanguisorbae. Pharmacogn Mag 2016; 12: 104-108
  • 118 Anderson K, Teuber S. Ellagic acid and polyphenolics present in walnut kernels inhibit in vitro human peripheral blood mononuclear cell proliferation and alter cytokine production. Ann N Y Acad Sci 2010; 1190: 86-96
  • 119 Bae JY, Choi JS, Kang SW, Lee YJ, Park J, Kang YH. Dietary compound ellagic acid alleviates skin wrinkle and inflammation induced by UV-B irradiation. Exp Dermatol 2010; 19: e182-e190
  • 120 Chatterjee A, Chatterjee S, Das S, Saha A, Chattopadhyay S, Bandyopadhyay S. Ellagic acid facilitates indomethacin-induced gastric ulcer healing via COX-2 up-regulation. Acta Biochim Biophys Sin (Shanghai) 2012; 44: 565-576
  • 121 Allam G, Mahdi E, Alzahrani A, Abuelsaad A. Ellagic acid alleviates adjuvant induced arthritis by modulation of pro- and anti-inflammatory cytokines. Cent Eur J Immunol 2016; 4: 339-349
  • 122 Ahad A, Ganai A, Mujeeb M, Siddiqui W. Ellagic acid, an NF-κB inhibitor, ameliorates renal function in experimental diabetic nephropathy. Chem Biol Interact 2014; 219: 64-75
  • 123 Aggarwal S, Ghilardi N, Xie MH, De Sauvage FJ, Gurney AL. Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17. J Biol Chem 2003; 278: 1910-1914
  • 124 Moseley TA, Haudenschild DR, Rose L, Reddi AH. Interleukin-17 family and IL-17 receptors. Cytokine Growth Factor Rev 2003; 14: 155-174
  • 125 Sanadgol N, Golab F, Tashakkor Z, Taki N, Moradi Kouchi S, Mostafaie A, Mehdizadeh M, Abdollahi M, Taghizadeh G, Sharifzadeh M. Neuroprotective effects of ellagic acid on cuprizone-induced acute demyelination through limitation of microgliosis, adjustment of CXCL12/IL-17/IL-11 axis and restriction of mature oligodendrocytes apoptosis. Pharm Biol 2017; 55: 1679-1687
  • 126 Filannino P, Azzi L, Cavoski I, Vincentini O, Rizzello C, Gobbetti M, Di Cagno R. Exploitation of the health-promoting and sensory properties of organic pomegranate (Punica granatum L.) juice through lactic acid fermentation. Int J Food Microbiol 2013; 163: 184-192
  • 127 Lee J, Won J, Choi J, Cha H, Jang Y, Park S, Kim HG, Kim HC, Kim DK. Protective effect of ellagic acid on concanavalin A induced hepatitis via toll-like receptor and mitogen-activated protein kinase/nuclear factor κB signaling pathways. J Agric Food Chem 2014; 62: 10110-10117
  • 128 National Heart, Lung, and Blood Institute. Metabolic syndrome. Available at: https://www.nhlbi.nih.gov/health/health-topics/topics/ms Accessed January 12, 2018
  • 129 American Heart Association. What is Metabolic syndrome. Available at: https://www.heart.org/idc/groups/heart-public/@wcm/@hcm/documents/downloadable/ucm_300322.pdf Accessed January 12, 2018
  • 130 Jurenka JS. Therapeutic applications of pomegranate (Punica granatum L.): a review. Altern Med Rev 2008; 13: 128-144
  • 131 Johanningsmeier SD, Harris GK. Pomegranate as a functional food and nutraceutical source. Annu Rev Food Sci Technol 2011; 2: 181-201
  • 132 Banihani S, Swedan S, Alguraan Z. Pomegranate and type 2 diabetes. Nutr Res 2013; 33: 341-348
  • 133 Pinto Mda S, de Carvalho JE, Lajolo FM, Genovese MI, Shetty K. Evaluation of antiproliferative, anti-type 2 diabetes, and antihypertension potentials of ellagitannins from strawberries (Fragaria × ananassa Duch.) using in vitro models. J Med Food 2010; 13: 1027-1035
  • 134 Malini P, Kanchana G, Murugan R. Antidiabetic efficacy of ellagic acid in streptozotocin-induced diabetes mellitus in rats. Asian J Pharm Clin Res 2011; 4: 124-128
  • 135 Uzor PF, Osadebe PO. Antidiabetic activity of the chemical constituents of Combretum dolichopetalum root in mice. EXCLI J 2016; 15: 290-296
  • 136 Amin MM, Arbid MS. Estimation of ellagic acid and/or repaglinide effects on insulin signaling, oxidative stress, and inflammatory mediators of liver, pancreas, adipose tissue, and brain in insulin resistant/type 2 diabetic rats. Appl Physiol Nutr Metab 2017; 42: 181-192
  • 137 Ueda H, Kawanishi K, Moriyasu M. Effects of ellagic acid and 2-(2,3,6-trihydroxy-4-carboxyphenyl)ellagic acid on sorbitol accumulation in vitro and in vivo . Biol Pharm Bull 2004; 27: 1584-1587
  • 138 Panchal SK, Ward L, Brown L. Ellagic acid attenuates high-carbohydrate, high-fat diet-induced metabolic syndrome in rats. Eur J Nutr 2013; 52: 559-568
  • 139 Ma Q. Role of Nrf2 in oxidative stress and toxicity. Annu Rev Pharmacol Toxicol 2013; 53: 401-426
  • 140 Jiménez-Osorio AS, González-Reyes S, Pedraza-Chaverri J. Natural Nrf2 activators in diabetes. Clin Chim Acta 2015; 448: 182-192
  • 141 Soetikno V, Sari FR, Veeraveedu PT, Thandavarayan RA, Harima M, Sukumaran V, Lakshmanan AP, Suzuki K, Kawachi H, Watanabe K. Curcumin ameliorates macrophage infiltration by inhibiting NF-κB activation and proinflammatory cytokines in streptozotocin induced-diabetic nephropathy. Nutr Metab (Lond) 2011; 8: 35
  • 142 Kumagai Y, Nakatani S, Onodera H, Nagatomo A, Nishida N, Matsuura Y, Kobata K, Wada M. Anti-glycation effects of pomegranate (Punica granatum L.) fruit extract and its components in vivo and in vitro . J Agric Food Chem 2015; 63: 7760-7764
  • 143 Rao AR, Veeresham C, Asres K. In vitro and in vivo inhibitory activities of four Indian medicinal plant extracts and their major components on rat aldose reductase and generation of advanced glycation end products. Phytother Res 2013; 27: 753-760
  • 144 Ahmed N. Advanced glycation endproducts – role in pathology of diabetic complications. Diabetes Res Clin Pract 2005; 67: 3-21
  • 145 Peyroux J, Sternberg M. Advanced glycation end products (AGEs): pharmacological inhibition in diabetes. Pathol Biol 2006; 54: 405-419
  • 146 Aslan HE, Beydemir Ş. Phenolic compounds: the inhibition effect on polyol pathway enzymes. Chem Biol Interact 2017; 266: 47-55
  • 147 Muthenna P, Akileshwari C, Reddy GB. Ellagic acid, a new antiglycating agent: its inhibition of N-(carboxymethyl)lysine. Biochem J 2012; 442: 221-230
  • 148 Raghu G, Jakhotia S, Yadagiri Reddy P, Kumar PA, Bhanuprakash Reddy G. Ellagic acid inhibits non-enzymatic glycation and prevents proteinuria in diabetic rats. Food Funct 2016; 7: 1574-1583
  • 149 Makino-Wakagi Y, Yoshimura Y, Uzawa Y, Zaima N, Moriyama T, Kawamura Y. Ellagic acid in pomegranate suppresses resistin secretion by a novel regulatory mechanism involving the degradation of intracellular resistin protein in adipocytes. Biochem Biophys Res Commun 2012; 417: 880-885
  • 150 Yoshimura Y, Nishii S, Zaima N, Moriyama T, Kawamura Y. Ellagic acid improves hepatic steatosis and serum lipid composition through reduction of serum resistin levels and transcriptional activation of hepatic ppara in obese, diabetic KK-A y mice. Biochem Biophys Res Commun 2013; 434: 486-491
  • 151 Kam A, Li KM, Razmovski-Naumovski V, Nammi S, Shi J, Chan K, Li GQ. A comparative study on the inhibitory effects of different parts and chemical constituents of pomegranate on α-amylase and α-glucosidase. Phytother Res 2013; 27: 1614-1620
  • 152 Bellesia A, Verzelloni E, Tagliazucchi D. Pomegranate ellagitannins inhibit α-glucosidase activity in vitro and reduce starch digestibility under simulated gastro-intestinal conditions. Int J Food Sci Nutr 2015; 66: 85-92
  • 153 Somsák L, Czifrák K, Tóth M, Bokor E, Chrysina ED, Alexacou KM, Hayes JM, Tiraidis C, Lazoura E, Leonidas DD, Zographos SE, Oikonomakos NG. New inhibitors of glycogen phosphorylase as potential antidiabetic agents. Curr Med Chem 2008; 15: 2933-2983
  • 154 Kyriakis E, Stravodimos GA, Kantsadi AL, Chatzileontiadou DS, Skamnaki VT, Leonidas DD. Natural flavonoids as antidiabetic agents. The binding of gallic and ellagic acids to glycogen phosphorylase b. FEBS Lett 2015; 589: 1787-1794
  • 155 Fatima N, Hafizur RM, Hameed A, Ahmed S, Nisar M, Kabir N. Ellagic acid in Emblica officinalis exerts anti-diabetic activity through the action on β-cells of pancreas. Eur J Nutr 2017; 56: 591-601
  • 156 Kang I, Buckner T, Shay NF, Gu L, Chung S. Improvements in metabolic health with consumption of ellagic acid and subsequent conversion into urolithins: evidence and mechanisms. Adv Nutr 2016; 7: 961-972
  • 157 Glass CK, Witztum JL. Atherosclerosis: the road ahead. Cell 2001; 104: 503-516
  • 158 Park SH, Kim JL, Lee ES, Han SY, Gong JH, Kang MK, Kang YH. Dietary ellagic acid attenuates oxidized LDL uptake and stimulates cholesterol efflux in murine macrophages. J Nutr 2011; 141: 1931-1937
  • 159 Rigamonti E, Chinetti-Gbaguidi G, Staels B. Regulation of macrophage functions by PPAR-α, PPAR-γ, and LXRs in mice and men. Arterioscler Thromb Vasc Biol 2008; 28: 1050-1059
  • 160 Rani UP, Kesavan R, Ganugula R, Avaneesh T, Kumar UP, Reddy GB, Dixit M. Ellagic acid inhibits PDGF-BB-induced vascular smooth muscle cell proliferation and prevents atheroma formation in streptozotocin-induced diabetic rats. J Nutr Biochem 2013; 24: 1830-1839
  • 161 Mansouri MT, Farbood Y, Naghizadeh B, Shabani S, Mirshekar MA, Sarkaki A. Beneficial effects of ellagic acid against animal models of scopolamine- and diazepam-induced cognitive impairments. Pharm Biol 2016; 54: 1947-1953
  • 162 Bansal N, Yadav P, Kumar M. Ellagic acid administration negated the development of streptozotocin-induced memory deficit in rats. Drug Res (Stuttg) 2017; 67: 425-431
  • 163 Sanadgol N, Golab F, Mostafaie A, Mehdizadeh M, Abdollahi M, Sharifzadeh M, Ravan H. Ellagic acid ameliorates cuprizone-induced acute CNS inflammation via restriction of microgliosis and down-regulation of CCL2 and CCL3 pro-inflammatory chemokines. Cell Mol Biol (Noisy-le-grand) 2016; 62: 24-30
  • 164 Nejad KH, Dianat M, Sarkaki A, Naseri MK, Badavi M, Farbood Y. Ellagic acid improves electrocardiogram waves and blood pressure against global cerebral ischemia rat experimental models. Electron Physician 2015; 7: 1153-1162
  • 165 Nejad KH, Gharib-Naseri MK, Sarkaki A, Dianat M, Badavi M, Farbood Y. Effects of ellagic acid pretreatment on renal functions disturbances induced by global cerebral ischemic-reperfusion in rat. Iran J Basic Med Sci 2017; 20: 75-82
  • 166 Farbood Y, Sarkaki A, Dolatshahi M, Taqhi Mansouri SM, Khodadadi A. Ellagic acid protects the brain against 6-hydroxydopamine induced neuroinflammation in a rat model of Parkinsonʼs disease. Basic Clin Neurosci 2015; 6: 83-89
  • 167 Liu QS, Deng R, Li S, Li X, Li K, Kebaituli G, Li X, Liu R. Ellagic acid protects against neuron damage in ischemic stroke through regulating the ratio of Bcl-2/Bax expression. Appl Physiol Nutr Metab 2017; 42: 855-860
  • 168 Sarkaki A, Farbood Y, Dolatshahi M, Mansouri SM, Khodadadi A. Neuroprotective effects of ellagic acid in a rat model of Parkinsonʼs -disease. Acta Med Iran 2016; 54: 494-502
  • 169 Baluchnejadmojarad T, Rabiee N, Zabihnejad S, Roghani M. Ellagic acid exerts protective effect in intrastriatal 6-hydroxydopamine rat model of Parkinsonʼs disease: possible involvement of ERβ/Nrf2/HO-1 signaling. Brain Res 2017; 1662: 23-30
  • 170 Khatri DK, Juvekar AR. Kinetics of inhibition of monoamine oxidase using curcumin and ellagic acid. Pharmacogn Mag 2016; 12: S116-S120
  • 171 Keshtzar E, Khodayar MJ, Javadipour M, Ghaffari MA, Bolduc DL, Rezaei M. Ellagic acid protects against arsenic toxicity in isolated rat mitochondria possibly through the maintaining of complex II. Hum Exp Toxicol 2016; 35: 1060-1072
  • 172 Siah M, Farzaei MH, Ashrafi-Kooshk MR, Adibi H, Arab SS, Rashidi MR, Khodarahmi R. Inhibition of guinea pig aldehyde oxidase activity by different flavonoid compounds: an in vitro study. Bioorg Chem 2016; 64: 74-84
  • 173 Athukuri BL, Neerati P. Enhanced oral bioavailability of metoprolol with gallic acid and ellagic acid in male Wistar rats: involvement of CYP2D6 inhibition. Drug Metab Pers Ther 2016; 31: 229-234
  • 174 Zhang HM, Zhao L, Li H, Xu H, Chen WW, Tao L. Research progress on the anticarcinogenic actions and mechanisms of ellagic acid. Cancer Biol Med 2014; 11: 92-100
  • 175 Liang WZ, Chou CT, Cheng JS, Wang JL, Chang HT, Chen IS, Lu T, Yeh JH, Kuo DH, Shieh P, Chen FA, Kuo CC, Jan CR. The effect of the phenol compound ellagic acid on Ca2+ homeostasis and cytotoxicity in liver cells. Eur J Pharmacol 2016; 780: 243-251
  • 176 Vicinanza R, Zhang Y, Henning SM, Heber D. Pomegranate juice metabolites, ellagic acid and urolithin A, synergistically inhibit androgen-independent prostate cancer cell growth via distinct effects on cell cycle control and apoptosis. Evid Based Complement Alternat Med 2013; 2013: 247504
  • 177 Wu S, Tian L. Diverse phytochemicals and bioactivities in the ancient fruit and modern functional food pomegranate (Punica granatum). Molecules 2017; 22: 1606
  • 178 Eskandari E, Heidarian E, Amini SA, Saffari-Chaleshtori J. Evaluating the effects of ellagic acid on pSTAT3, pAKT, and pERK1/2 signaling pathways in prostate cancer PC3 cells. J Cancer Res Ther 2016; 12: 1266-1271
  • 179 Wang L, Li W, Lin M, Garcia M, Mulholland D, Lilly M, Martins-Green M. Luteolin, ellagic acid and punicic acid are natural products that inhibit prostate cancer metastasis. Carcinogenesis 2014; 35: 2321-2330
  • 180 Kowshik J, Giri H, Kishore TK, Kesavan R, Vankudavath RN, Reddy GB, Dixit M, Nagini S. Ellagic acid inhibits VEGF/VEGFR2, PI3K/Akt and MAPK signaling cascades in the hamster cheek pouch carcinogenesis model. Anticancer Agents Med Chem 2014; 14: 1249-1260
  • 181 Naiki-Ito A, Chewonarin T, Tang M, Pitchakarn P, Kuno T, Ogawa K, Asamoto M, Shirai T, Takahashi S. Ellagic acid, a component of pomegranate fruit juice, suppresses androgen-dependent prostate carcinogenesis via induction of apoptosis. Prostate 2015; 75: 151-160
  • 182 Núñez-Sánchez MA, Karmokar A, González-Sarrías A, García-Villalba R, Tomás-Barberán FA, García-Conesa MT, Brown K, Espín JC. In vivo relevant mixed urolithins and ellagic acid inhibit phenotypic and molecular colon cancer stem cell features: a new potentiality for ellagitannin metabolites against cancer. Food Chem Toxicol 2016; 92: 8-16
  • 183 Yousef AI, El-Masry OS, Abdel Mohsen MA. Impact of cellular genetic make-up on colorectal cancer cell lines response to ellagic acid: implications of small interfering RNA. Asian Pac J Cancer Prev 2016; 17: 743-748
  • 184 Zhao J, Li G, Bo W, Zhou Y, Dang S, Wei J, Li X, Liu M. Multiple effects of ellagic acid on human colorectal carcinoma cells identified by gene expression profile analysis. Int J Oncol 2017; 50: 613-621
  • 185 Yousef AI, El-Masry OS, Yassin EH. The anti-oncogenic influence of ellagic acid on colon cancer cells in leptin-enriched microenvironment. Tumour Biol 2016; 37: 13345-13353
  • 186 Umesalma S, Nagendraprabhu P, Sudhandiran G. Ellagic acid inhibits proliferation and induced apoptosis via the Akt signalling pathway in HCT-15 colon adenocarcinoma cells. Mol Cell Biochem 2015; 399: 303-313
  • 187 Syed U, Ganapasam S. Beneficial influence of ellagic acid on biochemical indexes associated with experimentally induced colon carcinogenesis. J Cancer Res Ther 2017; 13: 62-68
  • 188 Cheng H, Lu C, Tang R, Pan Y, Bao S, Qiu Y, Xie M. Ellagic acid inhibits the proliferation of human pancreatic carcinoma PANC-1 cells in vitro and in vivo . Oncotarget 2017; 8: 12301-12310
  • 189 Chen HS, Bai MH, Zhang T, Li GD, Liu M. Ellagic acid induces cell cycle arrest and apoptosis through TGF-β/Smad3 signaling pathway in human breast cancer MCF-7 cells. Int J Oncol 2015; 46: 1730-1738
  • 190 Shi L, Gao X, Li X, Jiang N, Luo F, Gu C, Chen M, Cheng H, Liu P. Ellagic acid enhances the efficacy of PI3K inhibitor GDC-0941 in breast cancer cells. Curr Mol Med 2015; 15: 478-486
  • 191 Ahire V, Kumar A, Mishra KP, Kulkarni G. Ellagic acid enhances apoptotic sensitivity of breast cancer cells to γ-radiation. Nutr Cancer 2017; 69: 904-910
  • 192 Engelke LH, Hamacher A, Proksch P, Kassack MU. Ellagic acid and resveratrol prevent the development of cisplatin resistance in the epithelial ovarian cancer cell line A2780. J Cancer 2016; 7: 353-363
  • 193 Abdelazeem KNM, Singh Y, Lang F, Salker MS. Negative effect of ellagic acid on cytosolic pH regulation and glycolytic flux in human endometrial cancer cells. Cell Physiol Biochem 2017; 41: 2374-2382
  • 194 Guo H, Zhang D, Fu Q. Inhibition of cervical cancer by promoting IGFBP7 expression using ellagic acid from pomegranate peel. Med Sci Monit 2016; 22: 4881-4886
  • 195 Kumar D, Basu S, Parija L, Rout D, Manna S, Dandapat J, Debata PR. Curcumin and ellagic acid synergistically induce ROS generation, DNA damage, p 53 accumulation and apoptosis in HeLa cervical carcinoma cells. Biomed Pharmacother 2016; 81: 31-37
  • 196 Ceci C, Tentori L, Atzori MG, Lacal PM, Bonanno E, Scimeca M, Cicconi R, Mattei M, de Martino MG, Vespasiani G, Miano R, Graziani G. Ellagic acid inhibits bladder cancer invasiveness and in vivo tumor growth. Nutrients 2016; 8: E744
  • 197 Wang D, Chen Q, Liu B, Li Y, Tan Y, Yang B. Ellagic acid inhibits proliferation and induces apoptosis in human glioblastoma cells. Acta Cir Bras 2016; 31: 143-149
  • 198 Wang D, Chen Q, Tan Y, Liu B, Liu C. Ellagic acid inhibits human glioblastoma growth in vitro and in vivo . Oncol Rep 2017; 37: 1084-1092
  • 199 Salimi A, Roudkenar MH, Sadeghi L, Mohseni A, Seydi E, Pirahmadi N, Pourahmad J. Ellagic acid, a polyphenolic compound, selectively induces ROS-mediated apoptosis in cancerous B-lymphocytes of CLL patients by directly targeting mitochondria. Redox Biol 2015; 6: 461-471
  • 200 Mishra S, Vinayak M. Role of ellagic acid in regulation of apoptosis by modulating novel and atypical PKC in lymphoma bearing mice. BMC Complement Altern Med 2015; 15: 281
  • 201 Wei Y, Wang Y, Xia D, Guo S, Wang F, Zhang X, Gan Y. Thermosensitive liposomal codelivery of HSA-paclitaxel and HSA-ellagic acid complexes for enhanced drug perfusion and efficacy against pancreatic cancer. ACS Appl Mater Interfaces 2017; 9: 25138-25151
  • 202 Abd-Rabou AA, Ahmed HH. CS-PEG decorated PLGA nano-prototype for delivery of bioactive compounds: a novel approach for induction of apoptosis in HepG2 cell line. Adv Med Sci 2017; 62: 357-367
  • 203 Dubey A, Park DW, Kwon JE, Jeong YJ, Kim T, Kim I, Kang SC, Chi KW. Investigation of the biological and anti-cancer properties of ellagic acid-encapsulated nano-sized metalla-cages. Int J Nanomedicine 2015; 10: 227-240
  • 204 Lembo S, Balato A, Di Caprio R, Cirillo T, Giannini V, Gasparri F, Monfrecola G. The modulatory effect of ellagic acid and rosmarinic acid on ultraviolet-B-induced cytokine/chemokine gene expression in skin keratinocyte (HaCaT) cells. Biomed Res Int 2014; 2014: 346793
  • 205 Baccarin T, Lemos-Senna E. Potential application of nanoemulsions for skin delivery of pomegranate peel polyphenols. AAPS PharmSciTech 2017; 18: 3307-3314
  • 206 Mo J, Kaewnopparat N, Songkro S, Panichayupakaranant P, Reanmongkol W. Physicochemical properties, in vitro release and skin permeation studies of a topical formulation of standardized pomegranate rind extract. Pak J Pharm Sci 2015; 28: 29-36
  • 207 Mo J, Panichayupakaranant P, Kaewnopparat N, Nitiruangjaras A, Reanmongkol W. Wound healing activities of standardized pomegranate rind extract and its major antioxidant ellagic acid in rat dermal wounds. J Nat Med 2014; 68: 377-386
  • 208 Junyaprasert VB, Singhsa P, Suksiriworapong J, Chantasart D. Physicochemical properties and skin permeation of Span 60/Tween 60 niosomes of ellagic acid. Int J Pharm 2012; 423: 303-311
  • 209 Ito S, Wakamatsu K. A convenient screening method to differentiate phenolic skin whitening tyrosinase inhibitors from leukoderma-inducing phenols. J Dermatol Sci 2015; 80: 18-24
  • 210 Ortiz-Ruíz CV, Berna J, Tudela J, Varon R, García-Cánovas F. Action of ellagic acid on the melanin biosynthesis pathway. J Dermatol Sci 2016; 82: 115-122
  • 211 Draelos Z, Dahl A, Yatskayer M, Chen N, Krol Y, Oresajo C. Dyspigmentation, skin physiology, and a novel approach to skin lightening. J Cosmet Dermatol 2013; 12: 247-253
  • 212 Dahl A, Yatskayer M, Raab S, Oresajo C. Tolerance and efficacy of a product containing ellagic and salicylic acids in reducing hyperpigmentation and dark spots in comparison with 4 % hydroquinone. J Drugs Dermatol 2013; 12: 52-58
  • 213 Namekata I, Hamaguchi S, Wakasugi Y, Ohhara M, Hirota Y, Tanaka H. Ellagic acid and gingerol, activators of the sarco-endoplasmic reticulum Ca²⁺-ATPase, ameliorate diabetes mellitus-induced diastolic dysfunction in isolated murine ventricular myocardia. Eur J Pharmacol 2013; 706: 48-55
  • 214 Hemmati AA, Olapour S, Varzi HN, Khodayar MJ, Dianat M, Mohammadian B, Yaghooti H. Ellagic acid protects against arsenic trioxide-induced cardiotoxicity in rat. Hum Exp Toxicol 2017; 37: 412-419
  • 215 Lin MC, Yin MC. Preventive effects of ellagic acid against doxorubicin-induced cardio-toxicity in mice. Cardiovasc Toxicol 2013; 13: 185-193
  • 216 Kannan MM, Quine SD, Sangeetha T. Protective efficacy of ellagic acid on glycoproteins, hematological parameters, biochemical changes, and electrolytes in myocardial infarcted rats. J Biochem Mol Toxicol 2012; 26: 270-275
  • 217 Kannan MM, Quine SD. Ellagic acid inhibits cardiac arrhythmias, hypertrophy and hyperlipidaemia during myocardial infarction in rats. Metabolism 2013; 62: 52-61
  • 218 Dianat M, Amini N, Badavi M, Farbood Y. Ellagic acid improved arrhythmias induced by CaCl2 in the rat stress model. Avicenna J Phytomed 2015; 5: 120-127
  • 219 Olgar Y, Ozturk N, Usta C, Puddu PE, Ozdemir S. Ellagic acid reduces L-type Ca2+ current and contractility through modulation of NO-GC-cGMP pathways in rat ventricular myocytes. J Cardiovasc Pharmacol 2014; 64: 567-573
  • 220 Abuelsaad AS, Mohamed I, Allam G, Al-solumani AA. Antimicrobial and immunomodulating activities of hesperidin and ellagic acid against diarrheic Aeromonas hydrophila in a murine model. Life Sci 2013; 93: 714-722
  • 221 Park SW, Kwon MJ, Yoo JY, Choi HJ, Ahn YJ. Antiviral activity and possible mode of action of ellagic acid identified in Lagerstroemia speciosa leaves toward human rhinoviruses. BMC Complement Altern Med 2014; 14: 171
  • 222 Soh PN, Witkowski B, Olagnier D, Nicolau ML, Garcia-Alvarez MC, Berry A, Benoit-Vical F. In vitro and in vivo properties of ellagic acid in malaria treatment. Antimicrob Agents Chemother 2009; 53: 1100-1106
  • 223 Howell AB, DʼSouza DH. The pomegranate: effects on bacteria and viruses that influence human health. Evid Based Complement Alternat Med 2013; 2013: 606212
  • 224 Shaygannia E, Bahmani M, Zamanzad B, Rafieian-Kopaei M. A review study on Punica granatum L. J Evid Based Complementary Altern Med 2016; 21: 221-227
  • 225 Chinsembu KC. Tuberculosis and natureʼs pharmacy of putative anti-tuberculosis agents. Acta Trop 2016; 153: 46-56
  • 226 Tran TT, Kim M, Jang Y, Lee HW, Nguyen HT, Nguyen TN, Park HW, Le Dang Q, Kim JC. Characterization and mechanisms of anti-influenza virus metabolites isolated from the Vietnamese medicinal plant Polygonum chinense . BMC Complement Altern Med 2017; 17: 162
  • 227 Ajala OS, Jukov A, Ma CM. Hepatitis C virus inhibitory hydrolysable tannins from the fruits of Terminalia chebula . Fitoterapia 2014; 99: 117-123
  • 228 Reddy BU, Mullick R, Kumar A, Sudha G, Srinivasan N, Das S. Small molecule inhibitors of HCV replication from pomegranate. Sci Rep 2014; 4: 5411
  • 229 Park S, Kim JI, Lee I, Lee S, Hwang MW, Bae JY, Heo J, Kim D, Han SZ, Park MS. Aronia melanocarpa and its components demonstrate antiviral activity against influenza viruses. Biochem Biophys Res Commun 2013; 440: 14-19
  • 230 Pavlova EL, Zografov NN, Simeonova LS. Comparative study on the antioxidant capacities of synthetic influenza inhibitors and ellagic acid in model systems. Biomed Pharmacother 2016; 83: 755-762
  • 231 Núñez-Sánchez MA, García-Villalba R, Monedero-Saiz T, García-Talavera NV, Gómez-Sánchez MB, Sánchez-Álvarez C, García-Albert AM, Rodríguez-Gil FJ, Ruiz-Marín M, Pastor-Quirante FA, Martínez-Díaz F, Yáñez-Gascón MJ, González-Sarrías A, Tomás-Barberán FA, Espín JC. Targeted metabolic profiling of pomegranate polyphenols and urolithins in plasma, urine and colon tissues from colorectal cancer patients. Mol Nutr Food Res 2014; 58: 1199-1211
  • 232 U. S. National Library of Medicine, Clinical Trials.gov. A new supplement for the immune response to HPV infection. NCT02263378. Available at: https://clinicaltrials.gov/ct2/show/results/NCT02263378 Accessed March 16, 2018
  • 233 U. S. National Library of Medicine, Clinical Trials.gov. Dietary intervention in follicular lymphoma (KLYMF). NCT00455416. Available at: https://clinicaltrials.gov/ct2/show/NCT00455416 Accessed March 16, 2018
  • 234 U. S. National Library of Medicine, Clinical Trials.gov. Pomegranate extract supplementation in colorectal cancer patients. NCT01916239. Available at: https://clinicaltrials.gov/ct2/show/results/NCT01916239 Accessed March 16, 2018
  • 235 Ertam I, Mutlu B, Unal I, Alper S, Kivçak B, Ozer O. Efficiency of ellagic acid and arbutin in melasma: a randomized, prospective, open-label study. J Dermatol 2008; 35: 570-574
  • 236 Kasai K, Yoshimura M, Koga T, Arii M, Kawasaki S. Effects of oral administration of ellagic acid-rich pomegranate extract on ultraviolet-induced pigmentation in the human skin. J Nutr Sci Vitaminol (Tokyo) 2006; 52: 383-388
  • 237 Aguilar-Zárate P, Wong-Paz JE, Buenrostro-Figueroa JJ, Ascacio JA, Contreras-Esquivel JC, Aguilar CN. Ellagitannins: bioavailability, purification and biotechnological degradation. Mini Rev Med Chem 2017;
  • 238 Lei F, Xing DM, Xiang L, Zhao YN, Wang W, Zhang LJ, Du LJ. Pharmacokinetic study of ellagic acid in rat after oral administration of pomegranate leaf extract. J Chromatogr B Analyt Technol Biomed Life Sci 2003; 796: 189-194
  • 239 Murugan V, Mukherjee K, Maiti K, Mukherjee PK. Enhanced oral bioavailability and antioxidant profiles of ellagic acid by phospholipids. J Agric Food Chem 2009; 57: 4559-4565
  • 240 Yan L, Yin P, Ma C, Liu Y. Method development and validation for pharmacokinetic and tissue distributions of ellagic acid using ultrahigh performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Molecules 2014; 19: 18923-18935
  • 241 Seeram NP, Lee R, Heber D. Bioavailability of ellagic acid in human plasma after consumption of ellagitannins from pomegranate (Punica granatum L.) juice. Clin Chim Acta 2004; 348: 63-68
  • 242 Stoner GD, Sardo C, Apseloff G, Mullet D, Wargo W, Pound V, Singh A, Sanders J, Aziz R, Casto B, Sun X. Pharmacokinetics of anthocyanins and ellagic acid in healthy volunteers fed freeze-dried black raspberries daily for 7 days. J Clin Pharmacol 2005; 45: 1153-1164
  • 243 Lipińska L, Klewicka E, Sojka M. The structure, occurrence and biological activity of ellagitannins: a general review. Acta Sci Pol Technol Aliment 2014; 13: 289-299
  • 244 González-Barrio R, Borges G, Mullen W, Crozier A. Bioavailability of anthocyanins and ellagitannins following consumption of raspberries by healthy humans and subjects with an ileostomy. J Agric Food Chem 2010; 58: 3933-3939
  • 245 Seeram NP, Henning SM, Zhang Y, Suchard M, Li Z, Heber D. Pomegranate juice ellagitannin metabolites are present in human plasma and some persist in urine for up to 48 hours. J Nutr 2006; 136: 2481-2485
  • 246 Mertens-Talcott SU, Jilma-Stohlawetz P, Rios J, Hingorani L, Derendorf H. Absorption, metabolism, and antioxidant effects of pomegranate (Punica granatum L.) polyphenols after ingestion of a standardized extract in healthy human volunteers. J Agric Food Chem 2006; 54: 8956-8961
  • 247 González-Sarrías A, García-Villalba R, Núñez-Sánchez MÁ, Tomé-Carneiro J, Zafrilla P, Mulero J, Tomás-Barberán FA, Espín JC. Identifying the limits for ellagic acid bioavailability: a crossover pharmacokinetic study in healthy volunteers after consumption of pomegranate extracts. J Funct Foods 2015; 19: 225-235
  • 248 García-Villalba R, Beltrán D, Espín JC, Selma MV, Tomás-Barberán FA. Time course production of urolithins from ellagic acid by human gut microbiota. J Agric Food Chem 2013; 61: 8797-8806
  • 249 Bayle M, Roques C, Marion B, Audran M, Oiry C, Bressolle-Gomeni FM, Cros G. Development and validation of a liquid chromatography-electrospray ionization-tandem mass spectrometry method for the determination of urolithin C in rat plasma and its application to a pharmacokinetic study. J Pharm Biomed Anal 2016; 131: 33-39