Ultraschall Med 2019; 40(02): 194-204
DOI: 10.1055/a-0637-1601
Original Article
© Georg Thieme Verlag KG Stuttgart · New York

Contrast-Enhanced Ultrasound for Early Prediction of Response of Breast Cancer to Neoadjuvant Chemotherapy

Kontrastverstärkter Ultraschall zur frühen Vorhersage des Ansprechens von Brustkrebs auf die neoadjuvante Chemotherapie
Youn Joo Lee
1   Radiology, Daejeon St. Mary’s hospital, The Catholic University of Korea, Daejeon, Korea (the Republic of)
,
Sung Hun Kim
2   Radiology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea, Republic of
,
Bong Joo Kang
2   Radiology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea, Republic of
,
Yun Ju Kim
3   radiology, National Cancer Center, Goyang, Korea (the Republic of)
› Institutsangaben
Weitere Informationen

Publikationsverlauf

01. Januar 2018

14. Mai 2018

Publikationsdatum:
13. August 2018 (online)

Abstract

Purpose To evaluate the time-intensity curve (TIC) parameters on contrast-enhanced ultrasound (CEUS) for early prediction of the response of breast cancer to neoadjuvant chemotherapy (NAC).

Materials and Methods This prospective study included 41 patients with breast cancer. CEUS was performed before and after the first cycle of NAC. TIC parameters were analyzed for different regions of interest (ROIs). ROI 1 targeted the hotspot area of greatest enhancement, ROI 2 delineated the area of hyperenhancement, ROI 3 included the entire tumor on grayscale ultrasound, and ROI 4 encircled the normal parenchyma. The TIC perfusion values for ROI 1, 2, and 3 were divided by the ROI 4 value.

Results 11 (26.8 %) of the 41 patients showed a good response (Miller-Payne score 4 or 5) and 30 (73.2 %) showed a minor response (Miller-Payne score 1, 2, or 3). There were significant differences in the wash-out area under the curve, the wash-in and wash-out areas under the curve on ROI 1/4 after the first cycle of NAC, pre-NAC mean transit time local (mTTl) on ROI 2/4, and pre-NAC mTTl on ROI 3/4 between good and minor responders (area under the receiver-operating characteristic curve > 0.70, p < 0.05).

Conclusion Some TIC parameters obtained by CEUS may allow prediction of the response of breast cancer to NAC at a very early time point.

Zusammenfassung

Ziel Bewertung der Parameter der Zeit-Intensitäts-Kurve (TIC) im kontrastverstärkten Ultraschall (CEUS) zur frühen Vorhersage des Ansprechens von Brustkrebs auf die neoadjuvante Chemotherapie (NAC).

Material und Methoden Diese prospektive Studie umfasste 41 Patienten mit Brustkrebs. CEUS wurde vor und nach dem ersten NAC-Zyklus durchgeführt. Die TIC-Parameter wurden für verschiedene Regions of Interest (ROIs) analysiert. ROI 1 zielte auf den Bereich der stärksten Kontrastaufnahme, ROI 2 begrenzte den Bereich des Hyperenhancement, ROI 3 umfasste den gesamten Tumor im Graustufen-Ultraschall und ROI 4 umgab das normale Parenchym. Die TIC-Perfusionswerte für ROI 1, 2 und 3 wurden durch den Wert der ROI 4 dividiert.

Ergebnisse Elf (26,8 %) der 41 Patienten zeigten eine gutes Ansprechen (Miller-Payne-Grade 4 oder 5) und 30 (73,2 %) zeigten eine geringeres Ansprechen (Miller-Payne-Grade 1, 2 oder 3). Zwischen guten und weniger guten Respondern gab es signifikante Unterschiede in der Wash-out Area Under the Curve (AUC), den Wash-in und Wash-out AUCs für ROI 1/4 nach dem ersten NAC-Zyklus, der mittleren lokalen Transitzeit (mTT1) für ROI 2/4 vor-NAC und für die mTTl auf ROI 3/4 vor-NAC (AUC unter der Receiver-Operating-Characteristic-Kurve > 0,70, p < 0,05).

Schlussfolgerung Zu einem sehr frühen Zeitpunkt ermöglichen einige der im CEUS ermittelten TIC-Parameter eine Vorhersage des Ansprechens von Brustkrebs auf die NAC.

 
  • References

  • 1 Buchholz TA, Lehman CD, Harris JR. et al. Statement of the science concerning locoregional treatments after preoperative chemotherapy for breast cancer: a National Cancer Institute Conference. J Clin Oncol 2008; 26: 791-794
  • 2 Von Minckwitz G, Kaufmann M, Kuemmel S. et al. Correlation of various pathologic complete response (pCR) definitions with long-term outcome and the prognostic value of pCR in various breast cancer subtypes: Results from the German neoadjuvant meta-analysis. J Clin Oncol 2011; 29: 1028
  • 3 Kaufmann M, von Minckwitz G, Mamounas EP. et al. Recommendations from an international consensus conference on the current status and future of neoadjuvant systemic therapy in primary breast cancer. Ann Surg Oncol 2012; 19: 1508-1516
  • 4 Von Minckwitz G, Blohmer JU, Costa SD. et al. Response guided neoadjuvant chemotherapy for breast cancer. J Clin Oncol 2013; 31: 3623-3630
  • 5 Hylton NM, Blume JD, Bernreuter WK. et al. Locally advanced breast cancer: MR imaging for prediction of response to neoadjuvant chemotherapy–results from ACRIN 6657/I-SPY TRIAL. Radiology 2012; 263: 663-672
  • 6 Rieber A, Brambs HJ, Gabelmann A. et al. Breast MRI for monitoring response of primary breast cancer to neoadjuvant chemotherapy. Eur Radiol 2002; 12: 1711-1719
  • 7 Rousseau C, Devillers A, Sagan C. et al. Monitoring of early response to neoadjuvant chemotherapy in stage II and III breast cancer by (18F) fluorodeoxyglucose positron emission tomography. J Clin Oncol 2006; 24: 5366-5372
  • 8 Schwarz-Dose J, Untch M, Tiling R. et al. Monitoring primary systemic therapy of large and locally advanced breast cancer by using sequential positron emission tomography imaging with (18F) fluorodeoxyglucose. J Clin Oncol 2009; 27: 535-541
  • 9 Atri M, Hudson JM, Sinaei M. et al. Impact of acquisition method and region of interest placement on inter-observer agreement and measurement of tumor response to targeted therapy using dynamic contrast-enhanced ultrasound. Ultrasound Med Biol 2016; 42: 763-768
  • 10 Feng Y, Qin XC, Luo Y. et al. Efficacy of contrast-enhanced ultrasound washout rate in predicting hepatocellular carcinoma differentiation. Ultrasound Med Biol 2015; 41: 1553-1560
  • 11 Wilson SR, Kim TK, Jang HJ. et al. Enhancement patterns of focal liver masses: discordance between contrast-enhanced sonography and contrast-enhanced CT and MRI. Am J Roentgenol 2007; 189: W7-W12
  • 12 Bhayana D, Kim TK, Jang HJ. et al. Hypervascular liver masses on contrast-enhanced ultrasound: the importance of washout. Am J Roentgenol 2010; 194: 977-983
  • 13 Lassau N, Bonastre J, Kind M. et al. Validation of dynamic contrast-enhanced ultrasound in predicting outcomes of antiangiogenic therapy for solid tumors: the French multicenter support for innovative and expensive techniques study. Invest Radiol 2014; 49: 794
  • 14 Mori N, Mugikura S, Takahashi S. et al. Quantitative analysis of contrast-enhanced ultrasound imaging in invasive breast cancer: a novel technique to obtain histopathologic information of microvessel density. Ultrasound Med Biol 2017; 43: 607-614
  • 15 Wang Y, Fan W, Zhao S. et al. Qualitative, quantitative and combination score systems in differential diagnosis of breast lesions by contrast-enhanced ultrasound. Eur J Radiol 2016; 85: 48-54
  • 16 Saracco A, Szabó BK, Aspelin P. et al. Differentiation between benign and malignant breast tumors using kinetic features of real-time harmonic contrast-enhanced ultrasound. Acta Radiol 2012; 53: 382-388
  • 17 Ignee A, Jedrejczyk M, Schuessler G. et al. Quantitative contrast enhanced ultrasound of the liver for time intensity curves—reliability and potential sources of errors. Eur J Radiol 2010; 73: 153-158
  • 18 Szabó BK, Saracco A, Tánczos E. et al. Correlation of contrast-enhanced ultrasound kinetics with prognostic factors in invasive breast cancer. Eur Radiol 2013; 23: 3228-3236
  • 19 Chen M, Wang WP, Jia WR. et al. Three‐dimensional contrast‐enhanced sonography in the assessment of breast tumor angiogenesis. J Ultrasound Med 2014; 33: 835-846
  • 20 Amioka A, Masumoto N, Gouda N. et al. Ability of contrast-enhanced ultrasonography to determine clinical responses of breast cancer to neoadjuvant chemotherapy. Jpn J Clin Oncol 2016; 46: 303-309
  • 21 Lee SC, Grant E, Sheth P. et al. Accuracy of contrast‐enhanced ultrasound compared with magnetic resonance imaging in assessing the tumor response after neoadjuvant chemotherapy for breast cancer. J Ultrasound Med 2017; 36: 901-911
  • 22 Wang JW, Zheng W, Liu JB. et al. Assessment of early tumor response to cytotoxic chemotherapy with dynamic contrast-enhanced ultrasound in human breast cancer xenografts. PLoS One 2013; 8: e58274
  • 23 Saracco A, Szabó BK, Tánczos E. et al. Contrast-enhanced ultrasound (CEUS) in assessing early response among patients with invasive breast cancer undergoing neoadjuvant chemotherapy. Acta Radiol 2017; 58: 394-402
  • 24 Yuan C, Tang L, Zhang Q. et al. Contrast-enhanced ultrasound for evaluating the response of breast cancer to neoadjuvant chemotherapy: Time-intensity curve analysis and texture analysis. Ann Oncol 2016; 27 (Suppl. 06) 307P
  • 25 Cao X, Xue J, Zhao B. Potential application value of contrast-enhanced ultrasound in neoadjuvant chemotherapy of breast cancer. Ultrasound Med Biol 2012; 38: 2065-2071
  • 26 Ogston KN, Miller ID, Payne S. et al. A new histological grading system to assess response of breast cancers to primary chemotherapy: prognostic significance and survival. Breast 2003; 12: 320-327
  • 27 Bloom HJ, Richardson WW. Histological grading and prognosis in breast cancer; a study of 1409 cases of which 359 have been followed for 15 years. Br J Cancer 1957; 11: 359-377
  • 28 Lawrence I, Lin K. A concordance correlation coefficient to evaluate reproducibility. Biometrics 1989; 45: 255-268
  • 29 Nakata N, Ohta T, Nishioka M. et al. Optimization of region of interest drawing for quantitative analysis. J Ultrasound Med 2015; 34: 1969-1976
  • 30 Tang MX, Mulvana H, Gauthier T. et al. Quantitative contrast-enhanced ultrasound imaging: a review of sources of variability. Interface Focus 2011; 1: 520-539