Neonatologie Scan 2019; 08(01): 45-58
DOI: 10.1055/a-0642-0592
CME-Fortbildung
© Georg Thieme Verlag KG Stuttgart · New York

Ansätze zur Prävention einer Hirnschädigung bei Früh- und Reifgeborenen

Tanja Restin
,
Dirk Bassler
,
Michael Wolff

Subject Editor: Wissenschaftlich verantwortlich gemäß Zertifizierungsbestimmungen für diesen Beitrag ist Dr. med. Dr. sc. nat. Tanja Restin, Zürich.
Further Information

Publication History

Publication Date:
07 March 2019 (online)

Die Hirnschädigung eines Neugeborenen verändert das ganze Leben des Kindes und das seiner Familie. Obwohl die Ursachen vielfältig sind, sind die evidenzbasierten Präventionsmaßnahmen überschaubar und die Therapieoptionen limitiert. Der Artikel fasst die häufigsten Ursachen der Hirnschädigung zusammen, zeigt Risikofaktoren auf und vermittelt Ansätze zur Prävention bei Termin- und Frühgeborenen.

Kernaussagen
  • Die Schädigungsmuster des Gehirns von Termin- und Frühgeborenen sind unterschiedlich.

  • Die genaue Pathogenese der Hirnschädigung ist bis heute noch nicht vollständig verstanden, was auch die Prävention schwierig gestaltet.

  • Häufigste Schädigungsursache bei Termingeborenen ist die Asphyxie, bei Frühgeborenen die Hirnblutung und die periventrikuläre Leukomalazie.

  • Da zahlreiche Risikofaktoren für eine Hirnschädigung bereits pränatal bestehen, sollten Geburtshelfer und Neonatologen eng zusammenarbeiten, um eine spätere kindliche Hirnschädigung zu verhindern.

 
  • Literatur

  • 1 Gale C, Statnikov Y, Jawad S. et al. Neonatal brain injuries in England: population-based incidence derived from routinely recorded clinical data held in the National Neonatal Research Database. Arch Dis Child Fetal Neonatal Ed 2017; DOI: 10.1136/archdischild-2017-313707.
  • 2 Rosenbloom L. Definition and classification of zerebral palsy. Definition, classification, and the clinician. Dev Med Child Neurol Suppl 2007; 109: 43
  • 3 Ashwal S, Russman BS, Blasco PA. et al. Practice parameter: diagnostic assessment of the child with zerebral palsy: report of the Quality Standards Subcommittee of the American Academy of Neurology and the Practice Committee of the Child Neurology Society. Neurol 2004; 62: 851-863
  • 4 Novak I, Hines M, Goldsmith S. et al. Clinical prognostic messages from a systematic review on zerebral palsy. Pediatr 2012; 130: e1285-e1312
  • 5 Badawi N, Kurinczuk JJ, Keogh JM. et al. Intrapartum risk factors for newborn encephalopathy: the Western Australian case-control study. BMJ 1998; 317: 1554-1558
  • 6 Barton SK, Tolcos M, Miller SL. et al. Ventilation-Induced Brain Injury in Preterm Neonates: A Review of Potential Therapies. Neonatol 2016; 110: 155-162
  • 7 Wheeler K, Klingenberg C, McCallion N. et al. Volume-targeted versus pressure-limited ventilation in the neonate. Coch Data Syst Rev 2010; DOI: 10.1002/14651858. CD003666.pub3
  • 8 Azzopardi D, Brocklehurst P, Edwards D. et al. The TOBY Study. Whole body hypothermia for the treatment of perinatal asphyxial encephalopathy: a randomised controlled trial. BMC Pediatr 2008; 8: 17
  • 9 Shankaran S, Laptook AR, Ehrenkranz RA. et al. Whole-body hypothermia for neonates with hypoxic-ischemic encephalopathy. N Engl J Med 2005; 353: 1574-1584
  • 10 Jacobs SE, Berg M, Hunt R. et al. Cooling for newborns with hypoxic ischaemic encephalopathy. Coch Data Syst Rev 2013; DOI: 10.1002/14651858. CD003311.pub3
  • 11 Novak CM, Ozen M, Burd I. Perinatal Brain Injury: Mechanisms, Prevention, and Outcomes. Clin Perinatol 2018; 45: 357-375
  • 12 Sie LT, van der Knaap MS, Oosting J. et al. MR patterns of hypoxic-ischemic brain damage after prenatal, perinatal or postnatal asphyxia. Neuroped 2000; 31: 128-136
  • 13 Erecinska M, Thoresen M, Silver IA. Effects of hypothermia on energy metabolism in Mammalian central nervous system. J Cereb Blood Flow Metab 2003; 23: 513-530
  • 14 Grunt S, Mazenauer L, Buerki SE. et al. Incidence and outcomes of symptomatic neonatal arterial ischemic stroke. Pediatr 2015; 135: e1220-e1228
  • 15 Nelson KB, Lynch JK. Stroke in newborn infants. Lancet Neurol 2004; 3: 150-158
  • 16 Ichord R. Zerebral Sinovenous Thrombosis. Front Pediatr 2017; 5: 163
  • 17 Monagle P, Chan AKC, Goldenberg NA. et al. Antithrombotic therapy in neonates and children: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest 2012; 141: e737S-e801S
  • 18 Roach ES, Golomb MR, Adams R. et al. Management of stroke in infants and children: a scientific statement from a Special Writing Group of the American Heart Association Stroke Council and the Council on Cardiovascular Disease in the Young. Stroke 2008; 39: 2644-2691
  • 19 Zeitlin J, Szamotulska K, Drewniak N. et al. Preterm birth time trends in Europe: a study of 19 countries. BJOG 2013; 120: 1356-1365
  • 20 Bouyssi-Kobar M, du Plessis AJ, McCarter R. et al. Third Trimester Brain Growth in Preterm Infants Compared With In Utero Healthy Fetuses. Pediatr 2016; DOI: 10.1542/peds.2016-1640.
  • 21 Moore T, Hennessy EM, Myles J. et al. Neurological and developmental outcome in extremely preterm children born in England in 1995 and 2006: the EPICure studies. BMJ 2012; 345: e7961
  • 22 Weichert A, Weichert TM, Bergmann RL. et al. Factors for Preterm Births in Germany – An Analysis of Representative German Data (KiGGS). Geburtsh Frauenheilkd 2015; 75: 819-826
  • 23 Owens R. Intraventricular hemorrhage in the premature neonate. Neonatal Netw 2005; 24: 55-71
  • 24 Volpe JJ. The encephalopathy of prematurity – brain injury and impaired brain development inextricably intertwined. Semin Pediatr Neurol 2009; 16: 167-178
  • 25 Hentschel R, Guenther K, Vach W. et al. Risk-adjusted mortality of VLBW infants in high-volume versus low-volume NICUs. Arch Dis Child Fetal Neonatal Ed 2018; DOI: 10.1136/archdischild-2018-314956.
  • 26 Marlow N, Bennett C, Draper ES. et al. Perinatal outcomes for extremely preterm babies in relation to place of birth in England: the EPICure 2 study. Arch Dis Child Fetal Neonatal Ed 2014; 99: F181-F188
  • 27 Mohamed MA, Aly H. Transport of premature infants is associated with increased risk for intraventricular haemorrhage. Arch Dis Child Fetal Neonatal Ed 2010; 95: F403-F407
  • 28 Roberts D, Brown J, Medley N. et al. Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth. Coch Data Syst Rev 2017; 3: CD004454
  • 29 Rouse DJ, Hirtz DG, Thom E. et al. A randomized, controlled trial of magnesium sulfate for the prevention of zerebral palsy. N Engl J Med 2008; 359: 895-905
  • 30 Shepherd E, Salam RA, Middleton P. et al. Antenatal and intrapartum interventions for preventing zerebral palsy: an overview of Cochrane systematic reviews. Cochrane Database Syst Rev 2017; 8: CD012077
  • 31 Doyle LW, Crowther CA, Middleton P. et al. Antenatal magnesium sulfate and neurologic outcome in preterm infants: a systematic review. Obstet Gynecol 2009; 113: 1327-1333
  • 32 Marret S, Doyle LW, Crowther CA. et al. Antenatal magnesium sulphate neuroprotection in the preterm infant. Semin Fetal Neonatal Med 2007; 12: 311-317
  • 33 Rabe H, Diaz-Rossello JL, Duley L. et al. Effect of timing of umbilical cord clamping and other strategies to influence placental transfusion at preterm birth on maternal and infant outcomes. Coch Data Syst Rev 2012; DOI: 10.1002/14651858. CD003248.pub3
  • 34 Fogarty M, Osborn DA, Askie L. et al. Delayed vs early umbilical cord clamping for preterm infants: a systematic review and meta-analysis. Am J Obstet Gynecol 2018; 218: 1-18
  • 35 Lahra MM, Jeffery HE. A fetal response to chorioamnionitis is associated with early survival after preterm birth. Am J Obstet Gynecol 2004; 190: 147-151
  • 36 Mitha A, Foix-L'Helias L, Arnaud C. et al. Neonatal infection and 5-year neurodevelopmental outcome of very preterm infants. Pediatr 2013; 132: e372-e380
  • 37 Kenyon SL, Taylor DJ, Tarnow-Mordi W. et al. Broad-spectrum antibiotics for preterm, prelabour rupture of fetal membranes: the ORACLE I randomised trial. ORACLE Collaborative Group. Lancet 2001; 357: 979-988
  • 38 Kenyon S, Pike K, Jones DR. et al. Childhood outcomes after prescription of antibiotics to pregnant women with preterm rupture of the membranes: 7-year follow-up of the ORACLE I trial. Lancet 2008; 372: 1310-1318
  • 39 Ment LR, Oh W, Ehrenkranz RA. et al. Low-dose indomethacin and prevention of intraventricular hemorrhage: a multicenter randomized trial. Pediatr 1994; 93: 543-550
  • 40 Ment LR, Vohr B, Oh W. et al. Neurodevelopmental outcome at 36 monthsʼ corrected age of preterm infants in the Multicenter Indomethacin Intraventricular Hemorrhage Prevention Trial. Pediatr 1996; 98: 714-718
  • 41 Holwerda JC, Van Braeckel K, Roze E. et al. Functional outcome at school age of neonatal post-hemorrhagic ventricular dilatation. Early Hum Dev 2016; 96: 15-20
  • 42 Schmidt B, Roberts RS, Davis P. et al. Long-term effects of caffeine therapy for apnea of prematurity. N Engl J Med 2007; 357: 1893-1902
  • 43 Schmidt B, Roberts RS, Anderson PJ. et al. Academic Performance, Motor Function, and Behavior 11 Years After Neonatal Caffeine Citrate Therapy for Apnea of Prematurity: An 11-Year Follow-up of the CAP Randomized Clinical Trial. JAMA Pediatr 2017; 171: 564-572
  • 44 Doyle LW, Cheong JL, Ehrenkranz RA. et al. Early (< 8 days) systemic postnatal corticosteroids for prevention of bronchopulmonary dysplasia in preterm infants. Coch Data Syst Rev 2017; 10: CD001146
  • 45 Doyle LW, Cheong JL, Ehrenkranz RA. et al. Late (> 7 days) systemic postnatal corticosteroids for prevention of bronchopulmonary dysplasia in preterm infants. Coch Data Syst Rev 2017; 10: CD001145
  • 46 Baud O, Maury L, Lebail F. et al. Effect of early low-dose hydrocortisone on survival without bronchopulmonary dysplasia in extremely preterm infants (PREMILOC): a double-blind, placebo-controlled, multicentre, randomised trial. Lancet 2016; 387: 1827-1836
  • 47 Baud O, Trousson C, Biran V. et al. Two-year neurodevelopmental outcomes of extremely preterm infants treated with early hydrocortisone: treatment effect according to gestational age at birth. Arch Dis Child Fetal Neonatal Ed 2018; DOI: 10.1136/archdischild-2017-313756.
  • 48 Yoon BH, Romero R, Yang SH. et al. Interleukin-6 concentrations in umbilical cord plasma are elevated in neonates with white matter lesions associated with periventricular leukomalacia. Am J Obstet Gynecol 1996; 174: 1433-1440
  • 49 van Velthoven CT, Braccioli L, Willemen HL. et al. Therapeutic potential of genetically modified mesenchymal stem cells after neonatal hypoxic-ischemic brain damage. Mol Ther 2014; 22: 645-654
  • 50 Cotten CM, Murtha AP, Goldberg RN. et al. Feasibility of autologous cord blood cells for infants with hypoxic-ischemic encephalopathy. J Pediatr 2014; 164: 973-979 , e971