Rofo 2018; 190(11): 1025-1035
DOI: 10.1055/a-0647-2021
Review
© Georg Thieme Verlag KG Stuttgart · New York

4D-MR-Flussmessung: Technik und Anwendungen

Article in several languages: English | deutsch
Alexandra Sträter
1   Department of Diagnostic and Interventional Radiology, University Hospital Technical University of Munich
,
Armin Huber
2   Department of Radiology, Hospital Fürstenfeldbruck
,
Jan Rudolph
1   Department of Diagnostic and Interventional Radiology, University Hospital Technical University of Munich
,
Maria Berndt
3   Department of Neurology, University Hospital Technical University of Munich
,
Michael Rasper
1   Department of Diagnostic and Interventional Radiology, University Hospital Technical University of Munich
,
Ernst J. Rummeny
3   Department of Neurology, University Hospital Technical University of Munich
,
Jonathan Nadjiri
1   Department of Diagnostic and Interventional Radiology, University Hospital Technical University of Munich
› Author Affiliations
Further Information

Publication History

08 March 2017

07 May 2018

Publication Date:
13 August 2018 (online)

Zusammenfassung

Hintergrund Der Blutfluss durch das Herz und die großen Gefäße erfolgt pulsatil und unterliegt zeitlichen wie auch multidirektionalen Schwankungen. Bisher ist die Erfassung des Blutflusses in alle Richtungen und Phasen deutlich limitiert. Die MRT-gestützte 4D-Flussmessung ist eine fortschrittliche Methode zur Erfassung, Darstellung und Analyse von Flussverhältnissen in den Gefäßen.

Methode Basierend auf einer Literaturrecherche in der PubMed-Datenbank mit den Begriffen „4D-Flow-MRI, Phase-contrast magnetic-resonance-imaging, MR-flow-imaging/-visualization, MR-Flow-quantification, 3D-cine (time-resolved) phase-contrast CMR, three-directional velocity-encoding MR“ wurde der aktuelle Stand der Methode in dieser Übersichtsarbeit zusammengefasst.

Ergebnisse/Schlussfolgerung Diese Übersichtsarbeit fasst den aktuellen Stand der technischen Entwicklung der 4D-Flussmessung zusammen, diskutiert ihre Vor- und Nachteile und zeigt Anwendungsmöglichkeiten auf. Schließlich werden die wichtigsten Prinzipien und Parameter erklärt, sodass der Leser über die Anwendung der Methode, die möglichen klinischen Indikationen, die Auswertung verschiedener Parameter durch Post-processing-Methoden und die Limitationen des Verfahrens relevante Informationen erhält.

Kernaussagen:

  • 4D-Fluss-MRT

  • 3-dimensionale zeitaufgelöste Phasenkontrast-MRT

  • Flussanalyse-MRT (Wall-Shear-Stress/Druckgradienten-Messung/Vortex-Fluss/turbulente kinetische Energie/Flussgeschwindigkeit/Flussrate)

Zitierweise

  • Sträter A, Huber A, Rudolph J et al. 4D-Flow MRI: Technique and Applications. Fortschr Röntgenstr 2018; 190: 1025 – 1035

 
  • References

  • 1 Dyverfeld P. et al. 4D flow cardiovascular magnetic resonance consensus statement. J Cardiovasc Mag Res 2015; 17: 72
  • 2 François CJ, Markl M, Schiebler ML. et al. Four-dimensional, flow-sensitive magnetic resonance imaging of blood flow patterns in thoracic aortic dissections. Eur Radiol 2012 221122–30.
  • 3 Johnson KM, Markl M. Improved SNR in phase contrast velocimetry with five-point balanced flow encoding. Mag Res MEd 2010; 63: 349-355
  • 4 Uribe S, Beerbaum P, Sorensen TS. et al. Four-dimensional (4D) flow of the whole heart and great vessels using real-time respiratory self-gating. Magn Reson Med 2009; 62: 984-992
  • 5 Bernstein MA, Zhou XJ, Polzin JA. et al. Concomitant gradient terms in phase contrast MR: analysis and correction. Mag Res Med 1998; 39: 300-308
  • 6 Abdul-Rahman HS. et al. Fast and robust three-dimensional best path phase unwrapping algorithm. Appl Opt 2007; 46: 6623-6635
  • 7 Ha H. et al. Hemodynamic Measurement Using Four-Dimensional Phase-Contrast MRI: Quantification of Hemodynamic Parameters and Clinical Applications. Korean Journal of Radiology 2016; 17: 445-462
  • 8 Bagan P. et al. Cerebral ischemia during carotid artery cross-clamping: predictive value of phase-contrast magnetic resonance imaging. Ann Vasc Surg 2006; 20: 747-752
  • 9 Hope T. et al. Evaluation of intracranial stenoses and aneurysms with accelerated 4D flow. Mag Res Imag 2010; 28: 41-46
  • 10 Ku DN, Giddens DP, Zarins CK. et al. Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arteriosclerosis 1985; 5: 293-302
  • 11 Guzzardi DG. et al. Valve-Related Hemodynamics Mediate Human Bicuspid Aortopathy: Insights From Wall Shear Stress Mapping. J Am Col Cardiol 2015; 66: 892-900
  • 12 Barker AJ. et al. Bicuspid aortic valve is associated with altered wall shear stress in the ascending aorta. Circ Cardiovasc Imag 2012; 5: 457-466
  • 13 Bissel MM. et al. Concomitant gradient terms in phase contrast MR: analysis and correction. Circ Cardiovasc Imag 2013; 6: 499-507
  • 14 van Ooij P, Potters WV, Guédon A. et al. Wall shear stress estimated with phase contrast MRI in an in vitro and in vivo intracranial aneurysm. J Magn Res Imag 2013; 38: 876-884
  • 15 Isoda H, Ohkura Y, Kosugi T. et al. In vivo hemodynamic analysis of intracranial aneurysms obtained by magnetic resonance fluid dynamics (MRFD) based on time-resolved three-dimensional phase-contrast MRI. Neuroradiology 2010; 52: 921-928
  • 16 Dyverfeldt P, Gårdhagen R, Sigfridsson A. et al. On MRI turbulence quantification. Mag Res Imag 2009; 27: 913-922
  • 17 Zajac J, Eriksson J, Dyverfeldt P. et al. Turbulent kinetic energy in normal and myopathic left ventricles. J Mag Res Imag 2015; 41: 1021-1029
  • 18 Wong KK, Kelso RM, Worthley SG. et al. Cardiac flow analysis applied to phase contrast magnetic resonance imaging of the heart. Ann Biomed Eng 2009; 37: 1495-1515
  • 19 Elbaz MS. et al. Vortex flow during early and late left ventricular filling in normal subjects: quantitative characterization using retrospectively-gated 4D flow cardiovascular magnetic resonance and three-dimensional vortex core analysis. J Cardiovasc Mag Res 2014; DOI: 10.1186/s12968-014-0078-9.
  • 20 Manka R, Busch J, Crelier G. et al. Pre- and post-operative assessment of valvular and aortic flow using 4D flow magnetic resonance imaging. Eur Heart J 2013; 34: 1423
  • 21 Curiie PJ, Seward JB, Reeder GS. et al. Continuous-wave Doppler echocardiographic assessment of severity of calcific aortic stenosis: a simultaneous Doppler-catheter correlative study in 100 adult patients. Circulation 1985; 71: 1162-1169
  • 22 Cohn JN, Quyyumi AA, Hollenberg NK. et al. Surrogate markers for cardiovascular disease: functional markers. Circulation 2004; DOI: 10.1161/01.CIR.0000133442.99186.39.
  • 23 Bley TA. et al. Noninvasive assessment of transstenotic pressure gradients in porcine renal artery stenoses by using vastly undersampled phase-contrast MR angiography. Radiology 2011; 261: 266-273
  • 24 Lum DP, Johnson KM, Paul RK. et al. Transstenotic pressure gradients: measurement in swine--retrospectively ECG-gated 3D phase-contrast MR angiography versus endovascular pressure-sensing guidewires. Radiology 2007; 245: 751-760
  • 25 Wentland AL, Wieben O, François CJ. et al. Aortic pulse wave velocity measurements with undersampled 4D flow-sensitive MRI: comparison with 2D and algorithm determination. J Magn Res Ima 2013; 37: 853-859
  • 26 Bogren HG, Mohiaddin RH, Kilner PJ. et al. Blood flow patterns in the thoracic aorta studied with three-directional MR velocity mapping: the effects of age and coronary artery disease. J Mag Res IM 1997; 7: 784-793
  • 27 Harloff A, Strecker C, Frydrychowicz AP. et al. Plaques in the descending aorta: a new risk factor for stroke? Visualization of potential embolization pathways by 4D MRI. J Mag Res Imag 2007; 26: 1651-1655
  • 28 Sträter A, Korte S. et al. Feedforward activation of endothelial ENaC by high sodium. FASEB 2014; 28: 4015-4025
  • 29 Mahadevia R, Barker AJ, Schnell S. et al. Bicuspid aortic cusp fusion morphology alters aortic three-dimensional outflow patterns, wall shear stress, and expression of aortopathy. Circulation 2014; 129: 673-682
  • 30 Ku DN, Giddens DP, Zarins CK. et al. Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arteriosclerosis 1985; 5: 293-302
  • 31 Slager CJ, Wentzel JJ, Gijsen FJ. et al. The role of shear stress in the destabilization of vulnerable plaques and related therapeuic implications. Nat Clin Pract Cardiovasc Med 2005; 2: 456-464
  • 32 Monarriz PM, Gomez PA, Paredes I. et al. Basic Principles of Hemodynamics an cerebral Aneurysms. World Neurosurg 2016; 88: 311-319
  • 33 Tanweer O, Wilson TA, Metaxa E. et al. A comparative review of the hemodynamics and pathogenesis of cerebral and abdominal aortic aneurysms: lessons to lear from each other. J Cerebrovasc Endovasc Neurosurg 2014; 16: 335-349
  • 34 Reiter U, Reiter G, Kovacs G. et al. Evaluation of elevated mean pulmonary arterial pressure based on magnetic resonance 4D velocity mapping: comparison of visualization techniques. PLoS One 2013; 8: e82212
  • 35 Vasanawala SS, Hanneman K, Alley MT. et al. Congenital heart disease assesment with 4D flow MRI. J Mag Res Imag 2015; 42: 870-886
  • 36 Goldmann ME, Pearce LA, Hart RG. et al. Pathophysiologic correlates of thromboembolism in nonvalvular atrial fibrillation: Reduces flow velocity in the left atrial appendage. J Am Soc Echocardiogr 1999; 12: 1080-1087
  • 37 Handke M, Harloff A, Hetzel A. et al. Left atrial appendage flow velocity as a qualitative surrogate parameter for thromboembolic risk: determinats and relationship to spontaneous echocontrast and thrombus formation- a transoesophageal echocardiographic study in 500 patients with cerebral isc. J Am Soc Echocardiogr 2005; 18: 1366-1372
  • 38 Lee DC, Goldberger JJ, Fluckiger J. et al. Analysis of left atrial flow velocity distribution in 4D flow MRI in patients with atrial fibrillation. Circulation 2013; 128: A17900
  • 39 Saito Y, Sakuma H, Shibata M. et al. Assesment of coronary flow velocity reserve using fast velocity encoded cine MRI for noninvasive detection of restenosis after coronary stent implantation. J Cardiovasc Mag Reson 2001; 3: 209-214
  • 40 Nagel E, Thouet T, Klein C. et al. Noninvasive determination of coronary blood flow velocity with cardiovascular magnetic resonance in patients after stent deployment. Circulation 2003; 107: 1738-1702
  • 41 Harloff A, Markl M, Frydrychowicz A. et al. Diagnostik von Schlaganfallursachen. Der Nervenarzt 2009; 80: 929-940
  • 42 Rayz VL, Boussel L, Ge L. et al. Flow residence time and regions of intraluminal thrombus deposition in intracranial aneurysms. Ann Biomed Eng 2010; 38: 3058-3069
  • 43 Isolda H, Olikura Y, Kosugi T. et al. In vivo haemodyamic analysis of intracranial aneurysms obtained by magnetic resonance fluid dynamics (MRFD) based on time-resolved three-dimensional phasecontrast MRI. Neuroradiology 2010; 52: 921-928
  • 44 Hope TA, Hope MD, Purcell DD. et al. Evaluation of intracranial stenoses and aneurysms with accelerated 4D flow. Mag Res Imaging 2010; 28: 41-46
  • 45 Markl M, Lee DC, Ng J. et al. Left atrial 4-dimensional flow magnetic resonance imaging: stasis and velocity mapping in patients with atrial fibrillation. Invest Radiol 2016; 51: 147-154
  • 46 Roland-Alzate A, Francois CJ, Wieben O. et al. Emerging Applications of Abdominal 4D Flow MRI. Am J Roentgenol 2017