Ultraschall Med 2018; 39(05): 488-511
DOI: 10.1055/a-0659-2350
Continuing Medical Education
© Georg Thieme Verlag KG Stuttgart · New York

Ultrasound of Thyroid Nodules

Sonografie von Schilddrüsenknoten
Jörg Bojunga
Internal Medicine 1 – Endocrinology, University clinics Frankfurt am Main, Germany
› Institutsangaben
Weitere Informationen

Publikationsverlauf

11. Dezember 2017

05. Juli 2018

Publikationsdatum:
03. September 2018 (online)

Abstract

Thyroid nodules are a common finding in the general population. Ultrasonography is the most sensitive imaging tool for diagnosing thyroid nodules. However, sonographic differentiation of hormonally active versus inactive nodules, and in particular benign versus malignant nodules, remains unreliable. In this context, thyroid scintigraphy has its clinical significance predominantly in diagnosing hormonal activity of thyroid nodules. However, most nodules are benign and a significant number of patients undergo surgery for diagnostic rather than for therapeutic reasons. Efforts of the past years aimed to improve sonographic risk stratification, to predict malignancy of thyroid nodules through standardized diagnostic assessment of validated risk factors, in order to select patients who require further diagnostic workup. In the last years, several imaging and reporting systems, giving standardized categories with rates of malignancy, were evaluated as a basis for further clinical management. Recent technological developments, such as elastography, also show promising data and might be implemented into clinical practice. Ultrasound-guided fine needle aspiration is the key element in the diagnosis of sonographically suspicious thyroid nodules and significantly contributes to the diagnosis of malignancy versus benignity.

Zusammenfassung

Schilddrüsenknoten sind ein häufiger Befund in der Allgemeinbevölkerung. Die Sonografie ist dabei das wichtigste und sensitivste bildgebende Instrument der Schilddrüsendiagnostik. Eine sichere Unterscheidung hormonaktiver und inaktiver Knoten sowie insbesondere benigner und maligner Knoten ist jedoch sonografisch bisher nicht ausreichend sicher möglich. Die klinische Bedeutung der Szintigrafie liegt daher in der Differenzialdiagnose der Hormonaktivität von Schilddrüsenknoten. Insgesamt ist das Risiko eines Schilddrüsenknotens in der Allgemeinbevölkerung, maligne zu sein, als sehr gering einzustufen. Zur Risiko-Stratifizierung des Malignitätsrisikos von Knoten wurde daher in den vergangenen Jahren versucht, durch standardisierte Befunderhebung evaluierter Risikofaktoren eine bessere Selektion von Patienten, die einer weiteren Diagnostik zugeführt werden sollen, zu erzielen. Neuere technische Verfahren wie die Elastografie zeigen ebenfalls vielversprechende Daten und könnten Eingang in den klinischen Alltag gewinnen. Die sonografisch gesteuerte Feinnadelpunktion ist aktuell jedoch weiterhin das zentrale Element in der Diagnostik sonografisch suspekter Schilddrüsenknoten und trägt wesentlich zur Sicherung der Diagnose Malignität vs. Benignität bei.

 
  • Literatur

  • 1 Reiners C, Wegscheider K, Schicha H. et al. Prevalence of thyroid disorders in the working population of Germany: ultrasonography screening in 96,278 unselected employees. Thyroid 2004; 14: 926-932
  • 2 Russ G, Leboulleux S, Leenhardt L. et al. Thyroid Incidentalomas: Epidemiology, Risk Stratification with Ultrasound and Workup. Eur Thyroid J 2014; 3: 154-163
  • 3 Brander A, Viikinkoski P, Nickels J. et al. Thyroid gland: US screening in a random adult population. Radiology 1991; 181: 683-687
  • 4 Wiest PW, Hartshorne MF, Inskip PD. et al. Thyroid palpation versus high-resolution thyroid ultrasonography in the detection of nodules. J Ultrasound Med 1998; 17: 487-496
  • 5 Ezzat S, Sarti DA, Cain DR. et al. Thyroid incidentalomas. Prevalence by palpation and ultrasonography. Arch Intern Med 1994; 154: 1838-1840
  • 6 Frates MC, Benson CB, Doubilet PM. et al. Prevalence and distribution of carcinoma in patients with solitary and multiple thyroid nodules on sonography. J Clin Endocrinol Metab 2006; 91: 3411-3417
  • 7 Brito JP, Gionfriddo MR, Nofal AAl. et al. The accuracy of thyroid nodule ultrasound to predict thyroid cancer: systematic review and meta-analysis. J Clin Endocrinol Metab 2014; 99: 1253-1263
  • 8 Lin JD, Chao TC, Huang BY. et al. Thyroid cancer in the thyroid nodules evaluated by ultrasonography and fine-needle aspiration cytology. Thyroid 2005; 15: 708-717
  • 9 Durante C, Costante G, Lucisano G. et al. The natural history of benign thyroid nodules. JAMA 2015; 313: 926-935
  • 10 Robert-Koch-Institut. RKI – Schilddrüsenkrebs. Krebs in Deutschland; 2013: 108-111
  • 11 Ahn HS, Kim HJ, Welch HG. Korea’s thyroid-cancer ‘epidemic’--screening and overdiagnosis. N Engl J Med 2014; 371: 1765-1767
  • 12 Lee JH, Shin SW. Overdiagnosis and screening for thyroid cancer in Korea. Lancet (London, England) 2014; 384: 1848
  • 13 Brito JP, Nofal AAl, Montori VM. et al. The Impact of Subclinical Disease and Mechanism of Detection on the Rise in Thyroid Cancer Incidence: A Population-Based Study in Olmsted County, Minnesota During 1935 Through 2012. Thyroid 2015; 25: 999-1007
  • 14 Brito JP, Morris JC, Montori VM. Thyroid cancer: zealous imaging has increased detection and treatment of low risk tumours. BMJ 2013; 347: f4706
  • 15 Hofman MS. Thyroid nodules: time to stop over-reporting normal findings and update consensus guidelines. BMJ 2013; 347: f5742
  • 16 Gharib H, Papini E, Paschke R. et al. American Association of Clinical Endocrinologists, Associazione Medici Endocrinologi, and European Thyroid Association medical guidelines for clinical practice for the diagnosis and management of thyroid nodules: executive summary of recommendations. J Endocrinol Invest 2010; 33: 51-56
  • 17 Kwak JY, Han KH, Yoon JH. et al. Thyroid imaging reporting and data system for US features of nodules: a step in establishing better stratification of cancer risk. Radiology 2011; 260: 892-899
  • 18 Bonavita JA, Mayo J, Babb J. et al. Pattern recognition of benign nodules at ultrasound of the thyroid: which nodules can be left alone?. Am J Roentgenol 2009; 193: 207-213
  • 19 Virmani V, Hammond I. Sonographic patterns of benign thyroid nodules: verification at our institution. Am J Roentgenol 2011; 196: 891-895
  • 20 Remonti LR, Kramer CK, Leitão CB. et al. Thyroid ultrasound features and risk of carcinoma: a systematic review and meta-analysis of observational studies. Thyroid 2015; 25: 538-550
  • 21 Propper RA, Skolnick ML, Weinstein BJ. et al. The nonspecificity of the thyroid halo sign. J Clin Ultrasound 1980; 8: 129-132
  • 22 Rago T, Vitti P, Chiovato L. et al. Role of conventional ultrasonography and color flow-doppler sonography in predicting malignancy in ‘cold’ thyroid nodules. Eur J Endocrinol 1998; 138: 41-46
  • 23 Moon WJ, Jung SL, Lee JH. et al. Benign and malignant thyroid nodules: US differentiation--multicenter retrospective study. Radiology 2008; 247: 762-770
  • 24 Chan BK, Desser TS, McDougall IR. et al. Common and uncommon sonographic features of papillary thyroid carcinoma. J Ultrasound Med 2003; 22: 1083-1090
  • 25 Horvath E, Majlis S, Rossi R. et al. An ultrasonogram reporting system for thyroid nodules stratifying cancer risk for clinical management. J Clin Endocrinol Metab 2009; 94: 1748-1751
  • 26 Feldman MK, Katyal S, Blackwood MS. US artifacts. Radiographics 2009; 29: 1179-1189
  • 27 Malhi H, Beland MD, Cen SY. et al. Echogenic foci in thyroid nodules: significance of posterior acoustic artifacts. Am J Roentgenol 2014; 203: 1310-1316
  • 28 Moon HJ, Sung JM, Kim EK. et al. Diagnostic performance of gray-scale US and elastography in solid thyroid nodules. Radiology 2012; 262: 1002-1013
  • 29 Cappelli C, Castellano M, Pirola I. et al. Thyroid nodule shape suggests malignancy. Eur J Endocrinol 2006; 155: 27-31
  • 30 Cappelli C, Pirola I, Cumetti D. et al. Is the anteroposterior and transverse diameter ratio of nonpalpable thyroid nodules a sonographic criteria for recommending fine-needle aspiration cytology?. Clin Endocrinol (Oxf) 2005; 63: 689-693
  • 31 Kim EK, Park CS, Chung WY. et al. New sonographic criteria for recommending fine-needle aspiration biopsy of nonpalpable solid nodules of the thyroid. Am J Roentgenol 2002; 178: 687-691
  • 32 Hong YJ, Son EJ, Kim EK. et al. Positive predictive values of sonographic features of solid thyroid nodule. Clin Imaging 2010; 34: 127-133
  • 33 Campanella P, Ianni F, Rota CA. et al. Quantification of cancer risk of each clinical and ultrasonographic suspicious feature of thyroid nodules: a systematic review and meta-analysis. Eur J Endocrinol 2014; 170: R203-R211
  • 34 Papini E, Guglielmi R, Bianchini A. et al. Risk of malignancy in nonpalpable thyroid nodules: predictive value of ultrasound and color-Doppler features. J Clin Endocrinol Metab 2002; 87: 1941-1946
  • 35 Frates MC, Benson CB, Doubilet PM. et al. Can color Doppler sonography aid in the prediction of malignancy of thyroid nodules?. J Ultrasound Med 2003; 22: 127-131–134
  • 36 Ivanac G, Brkljacic B, Ivanac K. et al. Vascularisation of Benign and Malignant Thyroid Nodules: CD US Evaluation. Ultraschall der Medizin – Eur J Ultrasound 2007; 28: 502-506
  • 37 Moon HJ, Kwak JY, Kim MJ. et al. Can vascularity at power Doppler US help predict thyroid malignancy?. Radiology 2010; 255: 260-269
  • 38 Haugen BR, Alexander EK, Bible KC. et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2016; 26: 1-133
  • 39 Russ G, Bonnema SJ, Erdogan MF. et al. European Thyroid Association Guidelines for Ultrasound Malignancy Risk Stratification of Thyroid Nodules in Adults: The EU-TIRADS. Eur Thyroid J Karger Publishers 2017; 6: 225-237
  • 40 Rago T, Fiore E, Scutari M. et al. Male sex, single nodularity, and young age are associated with the risk of finding a papillary thyroid cancer on fine-needle aspiration cytology in a large series of patients with nodular thyroid disease. Eur J Endocrinol 2010; 162: 763-770
  • 41 Brito JP, Yarur AJ, Prokop LJ. et al. Prevalence of thyroid cancer in multinodular goiter versus single nodule: a systematic review and meta-analysis. Thyroid 2013; 23: 449-455
  • 42 Marqusee E, Benson CB, Frates MC. et al. Usefulness of ultrasonography in the management of nodular thyroid disease. Ann Intern Med 2000; 133: 696-700
  • 43 Sachmechi I, Miller E, Varatharajah R. et al. Thyroid carcinoma in single cold nodules and in cold nodules of multinodular goiters. Endocr Pract 2000; 6: 5-7
  • 44 Mihailescu DV, Schneider AB. Size, number, and distribution of thyroid nodules and the risk of malignancy in radiation-exposed patients who underwent surgery. J Clin Endocrinol Metab 2008; 93: 2188-2193
  • 45 Salmaslioğlu A, Erbil Y, Dural C. et al. Predictive value of sonographic features in preoperative evaluation of malignant thyroid nodules in a multinodular goiter. World J Surg 2008; 32: 1948-1954
  • 46 Gul K, Ersoy R, Dirikoc A. et al. Ultrasonographic evaluation of thyroid nodules: comparison of ultrasonographic, cytological, and histopathological findings. Endocrine 2009; 36: 464-472
  • 47 Nam-Goong IS, Kim HY, Gong G. et al. Ultrasonography-guided fine-needle aspiration of thyroid incidentaloma: correlation with pathological findings. Clin Endocrinol (Oxf) 2004; 60: 21-28
  • 48 Henrichsen TL, Reading CC, Charboneau JW. et al. Cystic change in thyroid carcinoma: Prevalence and estimated volume in 360 carcinomas. J Clin Ultrasound 2010; 38: 361-366
  • 49 Castro MR, Espiritu RP, Bahn RS. et al. Predictors of malignancy in patients with cytologically suspicious thyroid nodules. Thyroid 2011; 21: 1191-1198
  • 50 Shin JJ, Caragacianu D, Randolph GW. Impact of thyroid nodule size on prevalence and post-test probability of malignancy: A systematic review. Laryngoscope 2015; 125: 263-272
  • 51 Wharry LI, McCoy KL, Stang MT. et al. Thyroid nodules (≥4 cm): can ultrasound and cytology reliably exclude cancer?. World J Surg 2014; 38: 614-621
  • 52 Porterfield JR, Grant CS, Dean DS. et al. Reliability of benign fine needle aspiration cytology of large thyroid nodules. Surgery 2008; 144: 963-968–969
  • 53 Yoon JH, Kwak JY, Moon HJ. et al. The diagnostic accuracy of ultrasound-guided fine-needle aspiration biopsy and the sonographic differences between benign and malignant thyroid nodules 3 cm or larger. Thyroid 2011; 21: 993-1000
  • 54 Shrestha M, Crothers BA, Burch HB. The Impact of Thyroid Nodule Size on the Risk of Malignancy and Accuracy of Fine-Needle Aspiration: A 10-Year Study from a Single Institution. Thyroid 2012; 22: 1251-1256
  • 55 Machens A, Holzhausen HJ, Dralle H. The prognostic value of primary tumor size in papillary and follicular thyroid carcinoma. Cancer 2005; 103: 2269-2273
  • 56 Brauer VFH, Eder P, Miehle K. et al. Interobserver variation for ultrasound determination of thyroid nodule volumes. Thyroid 2005; 15: 1169-1175
  • 57 Nakamura H, Hirokawa M, Ota H. et al. Is an Increase in Thyroid Nodule Volume a Risk Factor for Malignancy?. Thyroid 2015; 25: 804-811
  • 58 McHenry CR, Slusarczyk SJ, Khiyami A. Recommendations for management of cystic thyroid disease. Surgery 1999; 126: 1167-1171–1172
  • 59 Kim DW, Lee EJ, In HS. et al. Sonographic differentiation of partially cystic thyroid nodules: a prospective study. Am J Neuroradiol 2010; 31: 1961-1966
  • 60 Lee MJ, Kim EK, Kwak JY. et al. Partially cystic thyroid nodules on ultrasound: probability of malignancy and sonographic differentiation. Thyroid 2009; 19: 341-346
  • 61 Park JM, Choi Y, Kwag HJ. Partially cystic thyroid nodules: ultrasound findings of malignancy. Korean J Radiol 2012; 13: 530-535
  • 62 Rosário PWS do, Fagundes TA, Maia FFR. Ultrasonographic features of papillary thyroid carcinoma. J Ultrasound Med 2004; 23: 572
  • 63 Tae HJ, Lim DJ, Baek KH. et al. Diagnostic value of ultrasonography to distinguish between benign and malignant lesions in the management of thyroid nodules. Thyroid 2007; 17: 461-466
  • 64 Hegedüs L. Clinical practice. The thyroid nodule. N Engl J Med 2004; 351: 1764-1771
  • 65 Bamber J, Cosgrove D, Dietrich CF. et al. EFSUMB guidelines and recommendations on the clinical use of ultrasound elastography. Part 1: Basic principles and technology. Ultraschall in Med 2013; 34: 169-184
  • 66 Cosgrove D, Piscaglia F, Bamber J. et al. EFSUMB guidelines and recommendations on the clinical use of ultrasound elastography. Part 2: Clinical applications. Ultraschall in Med 2013; 34: 238-253
  • 67 Friedrich-Rust M, Sperber A, Holzer K. et al. Real-time elastography and contrast-enhanced ultrasound for the assessment of thyroid nodules. Exp Clin Endocrinol Diabetes 2010; 118: 602-609
  • 68 Friedrich-Rust M, Romenski O, Meyer G. et al. Acoustic Radiation Force Impulse-Imaging for the evaluation of the thyroid gland: a limited patient feasibility study. Ultrasonics 2012; 52: 69-74
  • 69 Bojunga J, Dauth N, Berner C. et al. Acoustic Radiation Force Impulse Imaging for Differentiation of Thyroid Nodules. PLoS One 2012; 7: e42735
  • 70 Asteria C, Giovanardi A, Pizzocaro A. et al. US-elastography in the differential diagnosis of benign and malignant thyroid nodules. Thyroid 2008; 18: 523-531
  • 71 Trimboli P, Guglielmi R, Monti S. et al. Ultrasound sensitivity for thyroid malignancy is increased by real-time elastography: a prospective multicenter study. J Clin Endocrinol Metab 2012; 97: 4524-4530
  • 72 Sun J, Cai J, Wang X. Real-time ultrasound elastography for differentiation of benign and malignant thyroid nodules: a meta-analysis. J Ultrasound Med 2014; 33: 495-502
  • 73 Ghajarzadeh M, Sodagari F, Shakiba M. Diagnostic accuracy of sonoelastography in detecting malignant thyroid nodules: a systematic review and meta-analysis. Am J Roentgenol 2014; 202: W379-W389
  • 74 Liu BJ, Li DD, Xu HX. et al. Quantitative Shear Wave Velocity Measurement on Acoustic Radiation Force Impulse Elastography for Differential Diagnosis between Benign and Malignant Thyroid Nodules: A Meta-analysis. Ultrasound Med Biol 2015; 41: 3035-3043
  • 75 Zhan J, Jin JM, Diao XH. et al. Acoustic radiation force impulse imaging (ARFI) for differentiation of benign and malignant thyroid nodules-A meta-analysis. Eur J Radiol 2015; 84: 2181-2186
  • 76 Nell S, Kist JW, Debray TPA. et al. Qualitative elastography can replace thyroid nodule fine-needle aspiration in patients with soft thyroid nodules. A systematic review and meta-analysis. Eur J Radiol 2015; 84: 652-661
  • 77 Bojunga J, Herrmann E, Meyer G. et al. Real-time elastography for the differentiation of benign and malignant thyroid nodules: a meta-analysis. Thyroid 2010; 20: 1145-1150
  • 78 Cosgrove D, Barr R, Bojunga J. et al. WFUMB Guidelines and Recommendations on the Clinical Use of Ultrasound Elastography: Part 4. Thyroid. Ultrasound Med Biol 2017; 43: 4-26
  • 79 Maxim LD, Niebo R, Utell MJ. Screening tests: a review with examples. Inhal Toxicol 2014; 26: 811-828
  • 80 Friedrich-Rust M, Vorlaender C, Dietrich CF. et al. Evaluation of Strain Elastography for Differentiation of Thyroid Nodules: Results of a Prospective DEGUM Multicenter Study. Ultraschall in Med 2016; 37: 262-270
  • 81 Bojunga J, Dauth N, Berner C. et al. Acoustic radiation force impulse imaging for differentiation of thyroid nodules. PLoS One 2012; 7: e42735
  • 82 Friedrich-Rust M, Vorlaender C, Dietrich CF. et al. Evaluation of Strain Elastography for Differentiation of Thyroid Nodules: Results of a Prospective DEGUM Multicenter Study. Ultraschall in Med 2016; 37: 262-270
  • 83 Bhatia KSS, Rasalkar DP, Lee YP. et al. Cystic change in thyroid nodules: a confounding factor for real-time qualitative thyroid ultrasound elastography. Clin Radiol 2011; 66: 799-807
  • 84 Ahuja AT, Ying M. Sonographic evaluation of cervical lymph nodes. Am J Roentgenol 2005; 184: 1691-1699
  • 85 Leboulleux S, Girard E, Rose M. et al. Ultrasound criteria of malignancy for cervical lymph nodes in patients followed up for differentiated thyroid cancer. J Clin Endocrinol Metab 2007; 92: 3590-3594
  • 86 Khokhar MT, Day KM, Sangal RB. et al. Preoperative High-Resolution Ultrasound for the Assessment of Malignant Central Compartment Lymph Nodes in Papillary Thyroid Cancer. Thyroid 2015; 25: 1351-1354
  • 87 Yeh MW, Bauer AJ, Bernet VA. et al. American Thyroid Association statement on preoperative imaging for thyroid cancer surgery. Thyroid 2015; 25: 3-14
  • 88 Vinayaka US, Shivalli S, Rai S. et al. Diagnostic accuracy of high resolution ultrasound to differentiate neoplastic and non neoplastic causes of cervical lymphadenopathy. J Clin Diagn Res 2014; 8: RC05-RC07
  • 89 Steinkamp HJ, Cornehl M, Hosten N. et al. Cervical lymphadenopathy: ratio of long- to short-axis diameter as a predictor of malignancy. Br J Radiol 1995; 68: 266-270
  • 90 Sohn YM, Kwak JY, Kim EK. et al. Diagnostic approach for evaluation of lymph node metastasis from thyroid cancer using ultrasound and fine-needle aspiration biopsy. Am J Roentgenol 2010; 194: 38-43
  • 91 Rosário PWS do, Fagundes TA, Maia FFR. et al. Sonography in the diagnosis of cervical recurrence in patients with differentiated thyroid carcinoma. J Ultrasound Med 2004; 23: 915-920–922
  • 92 Chung YS, Kim JY, Bae JS. et al. Lateral lymph node metastasis in papillary thyroid carcinoma: results of therapeutic lymph node dissection. Thyroid 2009; 19: 241-246
  • 93 Machens A, Holzhausen HJ, Dralle H. Skip metastases in thyroid cancer leaping the central lymph node compartment. Arch Surg 2004; 139: 43-45
  • 94 Friedrich-Rust M, Meyer G, Dauth N. et al. Interobserver agreement of Thyroid Imaging Reporting and Data System (TIRADS) and strain elastography for the assessment of thyroid nodules. PLoS One 2013; 8: e77927
  • 95 Yoon JH, Lee HS, Kim EK. et al. Malignancy Risk Stratification of Thyroid Nodules: Comparison between the Thyroid Imaging Reporting and Data System and the 2014 American Thyroid Association Management Guidelines. Radiology 2015; 150056
  • 96 Lee SG, Lee WK, Lee HS. et al. Practical Performance of the 2015 American Thyroid Association Guidelines for Predicting Tumor Recurrence in Patients with Papillary Thyroid Cancer in South Korea. Thyroid 2017; 27: 174-181
  • 97 Feldkamp J, Führer D, Luster M. et al. Fine Needle Aspiration in the Investigation of Thyroid Nodules. Dtsch Arztebl Int 2016; 113: 353-359
  • 98 Medici M, Liu X, Kwong N. et al. Long- versus short-interval follow-up of cytologically benign thyroid nodules: a prospective cohort study. BMC Med 2016; 14: 11
  • 99 Feldkamp J, Schott M, Gogol M. et al. Die Klug-entscheiden-Initiative der Deutschen Gesellschaft für Innere Medizin. Internist (Berl) 2016; 57: 532-539
  • 100 Leboulleux S, Tuttle RM, Pacini F. et al. Papillary thyroid microcarcinoma: time to shift from surgery to active surveillance?. Lancet Diabetes Endocrinol 2016; 4: 933-942
  • 101 Alhashemi A, Goldstein DP, Sawka AM. A systematic review of primary active surveillance management of low-risk papillary carcinoma. Curr Opin Oncol 2016; 28: 11-17
  • 102 Brito JP, Ito Y, Miyauchi A. et al. A Clinical Framework to Facilitate Risk Stratification When Considering an Active Surveillance Alternative to Immediate Biopsy and Surgery in Papillary Microcarcinoma. Thyroid 2016; 26: 144-149
  • 103 Bibbins-Domingo K, Grossman DC, Curry SJ. et al. Screening for Thyroid Cancer. JAMA 2017; 317: 1882