Subscribe to RSS
DOI: 10.1055/a-0668-6031
Evaluation der Strahlendosis und Bildqualität von High-Pitch-70-kV-CT-Untersuchungen des Thorax bei immunsupprimierten Patienten
Article in several languages: English | deutschPublication History
25 January 2018
07 July 2018
Publication Date:
04 September 2018 (online)
Zusammenfassung
Ziel Das Ziel der Studie war, die Strahlendosis und Bildqualität von High-Pitch-70-kV-CT-Untersuchungen des Thorax bei immunsupprimierten Patienten im Vergleich zu 120-kV-CT-Bildgebung zu evaluieren.
Material und Methoden Die Bilddaten von 40 konsekutiven Patienten (14 Frauen und 26 Männer; Altersdurchschnitt 40,9 ± 15,4 Jahre), die eine High-Pitch-70-kV-CT-Untersuchung des Thorax erhielten, wurden retrospektiv ausgewertet. Eine gematchte Patientengruppe (n = 40) mit ähnlichem Alter, Geschlecht, BMI und klinischer Indikation, bei denen eine Standard-120-kV-CT-Untersuchung des Thorax durchgeführt wurde, diente als Kontrollgruppe. Alle CT-Aufnahmen erfolgten an einem Dual-Source-CT der dritten Generation. Zur Dosisabschätzung wurden der CT-Dosis-Index (CTDIvol), das Dosis-Längen-Produkt (DLP), die effektive Dosis (ED) und die größenspezifische Dosisabschätzung (SSDE) analysiert. Die objektive Bildqualität wurde mittels des Signal-Rausch-Verhältnisses (SNR) und des Kontrast-Rausch-Verhältnisses (CNR) ermittelt. Drei verblindete und unabhängige Radiologen evaluierten die subjektive Bildqualität und Diagnosesicherheit anhand von 5-Punkten-Likert-Skalen.
Ergebnisse Die mittleren Dosisparameter waren signifikant geringer für High-Pitch-70-kV-CT-Untersuchungen (CTDIvol 2,9 ± 0,9mGy; DLP 99,9 ± 31,0mGyxcm; ED 1,5 ± 0,6mSv; SSDE 3,8 ± 1,2 mGy) im Vergleich zu den Standard-120-kV-CT-Thorax-Untersuchungen (CTDIvol 8,8 ± 3,7mGy; DLP 296,6 ± 119,3mGyxcm; ED 4,4 ± 2,1mSv; SSDE 11,6 ± 4,4 mGy) (alle p≤ 0,001). Die objektiven Bildparameter (SNR 7,8 ± 2,1 vs. 8,4 ± 1,8; CNR 7,7 ± 2,4 vs. 8,3 ± 2,8) (p≥ 0,065) sowie die kumulative subjektive Bildqualität (4,5 ± 0,4 vs. 4,7 ± 0,3) (p = 0,052) zeigten keine signifikanten Unterschiede zwischen beiden CT-Untersuchungsprotokollen.
Schlussfolgerung High-Pitch-70-kV-CT-Untersuchungen des Thorax bei immunsupprimierten Patienten resultieren in einer deutlichen Reduktion der Strahlenbelastung im Vergleich zu Standard-120-kV-CT-Bildakquisition ohne eine Einschränkung der Bildqualität.
Kernaussagen:
-
Dual-Source-CT-Geräte der dritten Generation ermöglichen High-Pitch-70-kV-Untersuchungen des Thorax.
-
High-Pitch-70-kV-CT-Untersuchungen zeigen eine deutliche Dosisreduktion im Vergleich zu Standard-120-kV-CT-Untersuchungen.
-
High-Pitch-70-kV-CT-Untersuchungen des Thorax zeigen eine vergleichbare objektive und subjektive Bildqualität.
-
Subjektiv höheres Bildrauschen und Bildunschärfe bei 70-kV-CTs beeinflusste die subjektive Diagnosesicherheit nicht.
Zitierweise
-
Yel I, Martin SS, Wichmann JL et al. Evaluation of Radiation Dose and Image Quality using High-Pitch 70-kV Chest CT in Immunosuppressed Patients. Fortschr Röntgenstr 2019; 191: 122 – 129
-
References
- 1 Bajaj SK, Tombach B. Respiratory infections in immunocompromised patients: Lung findings using chest computed tomography. Radiology of Infectious Diseases 2017; 4: 29-37
- 2 Memoli MJ, Athota R, Reed S. et al. The Natural History of Influenza Infection in the Severely Immunocompromised vs Nonimmunocompromised Hosts. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America 2014; 58: 214-224
- 3 Köhler JR, Casadevall A, Perfect J. The Spectrum of Fungi That Infects Humans. Cold Spring Harbor Perspectives in Medicine 2015; 5: a019273
- 4 Ewig S, Höffken G, Kern WV. et al. S3-Leitlinie: Behandlung von erwachsenen Patienten mit ambulant erworbener Pneumonie und Prävention – Update 2016. Deutschen Gesellschaft für Pneumologie und Beatmungsmedizin.
- 5 Brodoefel H, Vogel M, Hebart H. et al. Long-term CT follow-up in 40 non-HIV immunocompromised patients with invasive pulmonary aspergillosis: kinetics of CT morphology and correlation with clinical findings and outcome. American journal of roentgenology 2006; 187: 404-413
- 6 Campanella F, Rossi L, Giroletti E. Are physicians aware enough of patient radiation protection? Results from a survey among physicians of Pavia District- Italy. BMC health services research 2017; 17: 406
- 7 Amis Jr. ES, Butler PF, Applegate KE. et al. American College of Radiology white paper on radiation dose in medicine. Journal of the American College of Radiology 2007; 4: 272-284
- 8 Smith-Bindman R, Lipson J, Marcus R. et al. Radiation Dose Associated with Common Computed Tomography Examinations and the Associated Lifetime Attributable Risk of Cancer. Archives of internal medicine 2009; 169: 2078-2086
- 9 Prakash P, Kalra MK, Ackman JB. et al. Diffuse lung disease: CT of the chest with adaptive statistical iterative reconstruction technique. Radiology 2010; 256: 261-269
- 10 Bongartz G, Golding S, Jurik A. et al. European Guidelines on Quality Criteria for Computed Tomography. Report EUR 16262 1999
- 11 Deak PD, Smal Y, Kalender WA. Multisection CT protocols: sex-and age-specific conversion factors used to determine effective dose from dose-length product. Radiology 2010; 257: 158-166
- 12 Boone J, Strauss K, Cody D. et al. Size-specific dose estimates (SSDE) in pediatric and adult body CT exams: Report of AAPM Task Group 204. 2011
- 13 Martin SS, Albrecht MH, Wichmann JL. et al. Value of a noise-optimized virtual monoenergetic reconstruction technique in dual-energy CT for planning of transcatheter aortic valve replacement. European radiology 2017; 27: 705-714
- 14 Bodelle B, Fischbach C, Booz C. et al. Free-breathing high-pitch 80kVp dual-source computed tomography of the pediatric chest: Image quality, presence of motion artifacts and radiation dose. European journal of radiology 2017; 89: 208-214
- 15 Cicchetti DV. Guidelines, criteria, and rules of thumb for evaluating normed and standardized assessment instruments in psychology. Psychological assessment 1994; 6: 284
- 16 Kubo T, Ohno Y, Nishino M. et al. Low dose chest CT protocol (50 mAs) as a routine protocol for comprehensive assessment of intrathoracic abnormality. European Journal of Radiology Open 2016; 3: 86-94
- 17 Gordic S, Morsbach F, Schmidt B. et al. Ultralow-dose chest computed tomography for pulmonary nodule detection: first performance evaluation of single energy scanning with spectral shaping. Investigative radiology 2014; 49: 465-473
- 18 Wichmann JL, Hu X, Kerl JM. et al. 70 kVp computed tomography pulmonary angiography: potential for reduction of iodine load and radiation dose. J Thorac Imaging 2015; 30: 69-76
- 19 Schueller-Weidekamm C, Schaefer-Prokop CM, Weber M. et al. CT angiography of pulmonary arteries to detect pulmonary embolism: improvement of vascular enhancement with low kilovoltage settings. Radiology 2006; 241: 899-907
- 20 Bodelle B, Klement D, Kerl JM. et al. 70 kV computed tomography of the thorax: valence for computer-assisted nodule evaluation and radiation dose – first clinical results. Acta radiologica (Stockholm, Sweden: 1987) 2014; 55: 1056-1062
- 21 Newell Jr JD, Fuld MK, Allmendinger T. et al. Very low-dose (0.15 mGy) chest CT protocols using the COPDGene 2 test object and a third-generation dual-source CT scanner with corresponding third-generation iterative reconstruction software. Investigative radiology 2015; 50: 40
- 22 Schaller F, Sedlmair M, Raupach R. et al. Noise Reduction in Abdominal Computed Tomography Applying Iterative Reconstruction (ADMIRE). Acad Radiol 2016; 23: 1230-1238
- 23 Robertson DD, Weiss PJ, Fishman EK. et al. Evaluation of CT techniques for reducing artifacts in the presence of metallic orthopedic implants. Journal of computer assisted tomography 1988; 12: 236-241
- 24 Baumueller S, Winklehner A, Karlo C. et al. Low-dose CT of the lung: potential value of iterative reconstructions. European radiology 2012; 22: 2597-2606
- 25 Tang K, Wang L, Li R. et al. Effect of low tube voltage on image quality, radiation dose, and low-contrast detectability at abdominal multidetector CT: phantom study. Journal of biomedicine & biotechnology 2012; 2012: 130169
- 26 Weis M, Henzler T, Nance Jr JW. et al. Radiation Dose Comparison Between 70 kVp and 100 kVp With Spectral Beam Shaping for Non-Contrast-Enhanced Pediatric Chest Computed Tomography: A Prospective Randomized Controlled Study. Investigative radiology 2017; 52: 155-162
- 27 Lell MM, May M, Deak P. et al. High-pitch spiral computed tomography: effect on image quality and radiation dose in pediatric chest computed tomography. Investigative radiology 2011; 46: 116-123
- 28 Baumueller S, Alkadhi H, Stolzmann P. et al. Computed tomography of the lung in the high-pitch mode: is breath holding still required?. Investigative radiology 2011; 46: 240-245
- 29 Thomas C, Ketelsen D, Tsiflikas I. et al. Dual-energy computed tomography: is there a penalty in image quality and radiation dose compared with single-energy computed tomography?. Journal of computer assisted tomography 2010; 34: 309-315
- 30 Lell MM, Scharf M, Eller A. et al. Feasibility of Respiratory-gated High-pitch Spiral CT: Free-breathing Inspiratory Image Quality. Acad Radiol 2016; 23: 406-412
- 31 Schulz B, Jacobi V, Beeres M. et al. Quantitative analysis of motion artifacts in high-pitch dual-source computed tomography of the thorax. J Thorac Imaging 2012; 27: 382-386
- 32 Nakagawa M, Ozawa Y, Sakurai K. et al. Image quality at low tube voltage (70 kV) and sinogram-affirmed iterative reconstruction for computed tomography in infants with congenital heart disease. Pediatric radiology 2015; 45: 1472-1479