RSS-Feed abonnieren
DOI: 10.1055/a-0966-5829
Pilotstudie: Vergleich der Artefakte von Brackets mittels Dual-Energy-CT
Pilot Study: Comparison of Artifacts of Brackets Using Dual-Energy CTPublikationsverlauf
Publikationsdatum:
25. März 2020 (online)
Zusammenfassung
Untersuchungen zur Anwendung der monochromen (MC) Bildgebung nach Implantation metallischer Materialien an den Extremitäten oder der Wirbelsäule haben gezeigt, dass dadurch verursachte Artefakte deutlich reduziert werden können. Aufgrund der hohen Ordnungszahlen und der hohen Dichte der in der Kieferorthopädie, Kieferchirurgie und Zahnerhaltung verwendeten Materialien stellen Aufhärtungsartefakte ein großes Problem bei der Computertomografie-Bildgebung (CT) der Zähne und des Kiefers dar. Die verursachten Einschränkungen der Bildqualität bei der Darstellung der Kiefer und denkbare Verbesserungsmöglichkeiten sind bisher unzureichend untersucht. Das Ziel dieser Arbeit war, die oben genannten Artefakte zu untersuchen und diese durch Erzeugung von Monochromen im Zahn- und Kieferbereich zu reduzieren. Dual-Energy-Computertomografien (DECTs) wurden an 10 Leichenköpfen mit und ohne kieferorthopädische Apparatur durchgeführt. Anschließend wurden MC von 80 bis 160 kV generiert. Die Artefakte wurden mit etablierten Methoden qualitativ und quantitativ beurteilt. An anatomischen Strukturen wie dem Mundboden und dem weichen Gaumen, die sich nicht in der gleichen axialen Ebene mit stark artefaktproduzierenden Objekten mit hoher Ordnungszahl befinden, konnte mit zunehmender kV-Zahl der MC eine Zunahme der Hounsfieldeinheiten (HE) beobachtet werden. An Strukturen in der gleichen Ebene mit artefaktproduzierenden Objekten konnte mit zunehmender kV-Zahl der MC eine Abnahme der HE beobachtet werden. Diese Studie zeigt, dass es auch im Kieferbereich möglich ist mittels MC Artefaktreduktion zu betreiben. In allen Untersuchungen konnten keine signifikant erhöhten Artefakte im Setting mit KFO-Apparatur im Vergleich zum Setting ohne KFO-Apparatur festgestellt werden.
Abstract
Studies on the use of monochrome (MC) imaging after implantation of metallic materials on the extremities or spine have shown that artifacts can be significantly reduced. Due to the high atomic numbers and high density of materials used in orthodontics, maxillofacial surgery and tooth preservation, hardening artifacts present a major problem in computed tomography (CT) imaging of the teeth, and jaw. The limitations of the image quality caused by the visualization of the jaw, and conceivable possibilities for improvement have not been adequately investigated. The aim of this work was to investigate the above artifacts and reduce them by creating monochromes in the jaw area. Dual energy CTs (DECTs) were performed on 10 corpse heads with and without orthodontic appliances. Subsequently, MCs of 80 to 160 kV were produced. The artifacts were assessed qualitatively and quantitatively using established methods. On anatomical structures such as the floor of the mouth and the soft palate, which are not in the same axial plane with high artefact producing objects of high atomic number, an increase of the Hunsfield units (HU) could be observed with increasing kV number of MC. On structures in the same plane with artifact-producing objects, a decrease of the HU could be observed with increasing kV number of MC. This study shows that it is also possible to reduce artifacts in the jaw area using MC. In all investigations no significantly increased artifacts were found in the setting with orthodontic appliances compared to the setting without orthodontic appliances.
-
Literatur
- 1 Kalender WA. Computertomografie. 2. Auflage. Erlangen: Publicis; 2006
- 2 Pessis E, Campagna R, Sverzut JM. et al. Virtual monochromatic spectral imaging with fast kilovoltage switching: reduction of metal artifacts at CT. Radiographics 2013; 33: 573-583
- 3 Chiro GD, Brooks RA, Kessler RM. et al. Tissue signatures with dual-energy computed tomography. Radiology 1979; 131: 521-523
- 4 Millner MR, McDavid WD, Waggener RG. Extraction of information from CT scans at different energies. Med Phys 1979; 6: 70-71
- 5 Genant HK, Boyd D. Quantitative bone mineral analysis using dual energy computed tomography. Invest Radiol 1977; 12: 545-551
- 6 Robinson E, Babb J, Chandarana H. et al. Dual source dual energy MDCT: comparison of 80 kVp and weighted average 120 kVp data for conspicuity of hypo-vascular liver metastases. Invest Radiol 2010; 45: 413-418
- 7 Thomas C, Krauss B, Ketelsen D. et al. Differentiation of urinary calculi with dual energy CT: effect of spectral shaping by high energy tin filtration. Invest Radiol 2010; 45: 393-398
- 8 Johnson TR. Dual-energy CT: general principles. AJR Am J Roentgenol 2012; 199: 3-8
- 9 Zhang LJ, Peng J, Wu SY. et al. Dual source dual-energy computed tomography of acute myocardial infarction: correlation with histopathologic findings in a canine model. Invest Radiol 2010; 45: 290-297
- 10 Chae EJ, Seo JB, Lee J. et al. Xenon ventilation imaging using dual-energy computed tomography in asthmatics: initial experience. Invest Radiol 2010; 45: 354-361
- 11 Krasnicki T, Podgorski P, Guzinski M. et al. Novel clinical applications of dual energy computed tomography. Adv Clin Exp Med 2012; 21: 831-841
- 12 Karcaaltincaba M, Aktas A. Dual-energy CT revisited with multidetector CT: review of principles and clinical applications. Diagn Interv Radiol 2011; 17: 181-194
- 13 De Cecco CN, Darnell A, Rengo M. et al. Dual-energy CT: oncologic applications. AJR Am J Roentgenol 2012; 199: 98-105
- 14 Nicolaou S, Liang T, Murphy DT. et al. Dual-energy CT: a promising new technique for assessment of the musculoskeletal system. AJR Am J Roentgenol 2012; 199: 78-86
- 15 Phan CM, Yoo AJ, Hirsch JA. et al. Differentiation of hemorrhage from iodinated contrast in different intracranial compartments using dual-energy head CT. AJNR Am J Neuroradiol 2012; 33: 1088-1094
- 16 Kim SJ, Lim HK, Lee HY. et al. Dual-energy CT in the evaluation of intracerebral hemorrhage of unknown origin: differentiation between tumor bleeding and pure hemorrhage. AJNR Am J Neuroradiol 2012; 33: 865-872
- 17 Brockmann C, Scharf J, Nolte IS. et al. Dual-energy CT after peri-interventional subarachnoid haemorrhage: a feasibility study. Clin Neuroradiol 2010; 20: 231-235
- 18 Gupta R, Phan CM, Leidecker C. et al. Evaluation of dual-energy CT for differentiating intracerebral hemorrhage from iodinated contrast material staining. Radiology 2010; 257: 205-211
- 19 Postma AA, Hofman PA, Stadler AA. et al. Dual-energy CT of the brain and intracranial vessels. AJR Am J Roentgenol 2012; 199: 26-33
- 20 McCollough CH, Leng S, Yu L. et al. Dual- and Multi-Energy CT: Principles, Technical Approaches, and Clinical Applications. Radiology 2015; 276: 637-653 Figure 16: Axial CT images. By using custom software that takes advantage of the increased in-spectral separation provided by a tin filter on the high-energy beam of a dual-source CT system, uric acid stones (red) can be distinguished from three groups of non–uric acid stones: cystine (yellow), calcium oxalate/brushite/struvite (green), and apatite (blue). (a) Uric acid stone in a 71-year-old man. (b) Cystine stone in a 63-year-old man. (c) Calcium oxalate stone in a 21-year-old woman. (d) Apatite stone in a 34-year-old woman.S. 648
- 21 Yu L, Christner JA, Leng S. et al. Virtual monochromatic imaging in dual-source dual-energy CT: radiation dose and image quality. Med Phys 2011; 38: 6371-6379
- 22 Sudarski S, Apfaltrer P, Nance JW. et al. Optimization of keV-settings in abdominal and lower extremity dual-source dual-energy CT angiography determined with virtual monoenergetic imaging. Eur J Radiol 2013; 82: 574-581
- 23 Lin CH, Chen YY, Chiu LA. et al. Dual energy computed tomography angiography for the rapid diagnosis of reversible cerebral vasoconstriction syndromes: report of a case. Acta Neurol Taiwan 2013; 22: 36-42
- 24 Morhard D, Fink C, Graser A. et al. Cervical and cranial computed tomographic angiography with automated bone removal: dual energy computed tomography versus standard computed tomography. Invest Radiol 2009; 44: 293-297
- 25 Schneider D, Apfaltrer P, Sudarski S. et al. Optimization of Kiloelectron Volt Settings in Cerebral and Cervical Dual-energy CT Angiography Determined with Virtual Monoenergetic Imaging. Acad Radiol 2014; 21: 431-436
- 26 Vock P, Szucs-Farkas Z. Dual energy subtraction: principles and clinical applications. Eur J Radiol 2009; 72: 231-237
- 27 Grams AE, Sender J, Moritz R. et al. Dual Energy CT Myelography after Lumbar Osteosynthesis. Rofo 2014; 186: 670-674
- 28 McCollough CH, Leng S, Yu L. et al. Dual- and Multi-Energy CT: Principles, Technical Approaches, and Clinical Applications. Radiology 2015; 276: 637-653. Figure 10: Coronal CT angiogram in a 62-year-old woman. With dual-energy techniques, bone anatomy can be auto-matically separated from the vascular anatomy and highly enhancing kidneys. S 645
- 29 Khan AN, Khosa F, Shuaib W. et al. Effect of Tube Voltage (100 vs. 120 kVp) on Radiation Dose and Image Quality using Prospective Gating 320 Row Multi-detector Computed Tomography Angiography. J Clin Imaging Sci 2013; 3: 62 . doi: 10.4103/2156-7514.124092 [eCollection 2013]
- 30 Lewis M, Reid K, Toms AP. Reducing the effects of metal artefact using high keV monoenergetic reconstruction of dual energy CT (DECT) in hip replacements. Skeletal Radiol 2013; 42: 275-282
- 31 Meinel FG, Bischoff B, Zhang Q. et al. Metal artifact reduction by dual-energy computed tomography using energetic extrapolation: a systematically optimized protocol. Invest Radiol 2012; 47: 406-414
- 32 Zhou C, Zhao YE, Luo S. et al. Monoenergetic imaging of dual-energy CT reduces artifacts from implanted metal orthopedic devices in patients with factures. Acad Radiol 2011; 18: 1252-1257
- 33 Wang Y, Qian B, Li B. et al. Metal artifacts reduction using monochromatic images from spectral CT: evaluation of pedicle screws in patients with scoliosis. Eur J Radiol 2013; 82: 360-366
- 34 Guggenberger R, Winklhofer S, Osterhoff G. et al. Metallic artefact reduction with monoenergetic dual-energy CT: systematic ex vivo evaluation of posterior spinal fusion implants from various vendors and different spine levels. Eur Radiol 2012; 22: 2357-2364
- 35 Bamberg F, Dierks A, Nikolaou K. et al. Metal artifact reduction by dual energy computed tomography using monoenergetic extrapolation. Eur Radiol 2011; 21: 1424-1429
- 36 Park HH, Shin JY, Lee J. et al. A study on the artifacts generated by dental materials in PET/CT image. Conf Proc IEEE Eng Med Biol Soc 2013; 2013: 2465-2468
- 37 Grams AE, Gempt J, Forschler A. Comparison of spinal anatomy between 3-Tesla MRI and CT-myelography under healthy and pathological conditions. Surg Radiol Anat 2010; 32: 581-585
- 38 Glodny B, Helmel B, Trieb T. et al. A method for calcium quantification by means of CT coronary angiography using 64-multidetector CT: very high correlation with Agatston and volume scores. Eur Radiol 2009; 19: 1661-1668
- 39 Glodny B, Nasseri P, Plaikner M. et al. Prediction of the presence of renal artery stenosis by calcium scoring of the abdominal aorta. Eur J Radiol 2012; 81: 1393-1399
- 40 Glodny B, Rapf K, Unterholzner V. et al. Accessory or additional renal arteries show no relevant effects on the width of the upper urinary tract: a 64-slice multidetector CT study in 1072 patients with 2132 kidneys. Br J Radiol 2011; 84: 145-152
- 41 Glodny B, Nasseri P, Crismani A. et al. The occurrence of dental caries is associated with atherosclerosis. Clinics (Sao Paulo) 2013; 68: 946-953
- 42 McHanwell S, Brenner E, Chirculescu AR. et al. The legal and ethical framework governing Body Donation in Europe – A review of current practice and recommendations for good practice. Eur. J Anat 2008; 12: 1-24
- 43 Platzer W, Putz R, Poisel S. Ein neues Konservierungs- und Aufbewahrungssystem für anatomisches Material. Acta Anat 1978; 102: 60-67
- 44 Riederer BM, Bolt S, Brenner E. et al. The legal and ethical framework governing Body Donation in Europe – 1st update on current practice. Eur. J Anat 2012; 16: 1-21
- 45 Oloomi S, Noori Eskandari H, Zakavi SR. et al. A New Approach for Scatter Removal and Attenuation Compensation from SPECT/CT Images. Iran J Basic Med Sci 2013; 16: 1181-1189
- 46 Stolzmann P, Winklhofer S, Schwendener N. et al. Monoenergetic computed tomography reconstructions reduce beam hardening artifacts from dental restorations. Forensic Sci Med Pathol 2013; 9: 327-332
- 47 Tanaka R, Hayashi T, Ike M. et al. Reduction of dark-band-like metal artifacts caused by dental implant bodies using hypothetical monoenergetic imaging after dual-energy computed tomography. Oral Surg Oral Med Oral Pathol Oral Radiol 2013; 115: 833-838
- 48 Hegazy MA, Eldib ME, Hernandez D. et al. Dual-energy-based metal segmentation for metal artifact reduction in dental computed tomography. Med Phys 2018; 45: 714-724
- 49 Große Hokamp N, Laukamp K, Lennartz S. et al. Artifact reduction from dental implants using virtual monoenergetic reconstructions from novel spectral detector CT. Eur J Radiol 2018; 104: 136-142