Z Geburtshilfe Neonatol 2020; 224(01): 15-21
DOI: 10.1055/a-0998-4532
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Intrauterine Wachstumsrestriktion: Transsektorale, interdisziplinäre und multiprofessionelle Betreuung von Schwangeren und Neugeborenen im Feto-Neonat-Pfad: Ein Projekt des Innovationsfonds

Intrauterine Growth Restriction: Transsectoral, Interdisciplinary and Multiprofessional Care for Pregnant Women and Newborns in a Feto-neonatal Pathway: A Project of the Innovationsfonds
Lars Mense
1   Zentrum für Feto-Neonatale Gesundheit an der TU Dresden, TU Dresden, Dresden
2   Klinik und Poliklinik für Kinder- und Jugendmedizin, Fachbereich Neonatologie & Pädiatrische Intensivmedizin, Universitätsklinikum Carl Gustav Carus, Dresden
,
Cahit Birdir
1   Zentrum für Feto-Neonatale Gesundheit an der TU Dresden, TU Dresden, Dresden
3   Klinik und Poliklinik für Frauenheilkunde und Geburtshilfe, Universitätsklinikum Carl Gustav Carus Dresden, Dresden
,
Jörg Reichert
1   Zentrum für Feto-Neonatale Gesundheit an der TU Dresden, TU Dresden, Dresden
4   Klinik und Poliklinik für Kinder- und Jugendmedizin, Universitätsklinikum Carl Gustav Carus an der TU Dresden, Dresden
,
Ekkehard Schleußner
5   Klinik für Geburtsmedizin, Universitätsklinikum Jena, Jena
,
Hans Proquitté
6   Klinik für Kinder- und Jugendmedizin, Sektion Neonatologie und Pädiatrische Intensivmedizin, Universitätsklinikum Jena, Jena
,
Jochen Schmitt
1   Zentrum für Feto-Neonatale Gesundheit an der TU Dresden, TU Dresden, Dresden
7   Zentrum für Evidenzbasierte Gesundheitsversorgung, Universitätsklinikum Carl Gustav Carus an der TU Dresden, Dresden
,
Gabriele Müller
1   Zentrum für Feto-Neonatale Gesundheit an der TU Dresden, TU Dresden, Dresden
7   Zentrum für Evidenzbasierte Gesundheitsversorgung, Universitätsklinikum Carl Gustav Carus an der TU Dresden, Dresden
,
Mario Rüdiger
1   Zentrum für Feto-Neonatale Gesundheit an der TU Dresden, TU Dresden, Dresden
2   Klinik und Poliklinik für Kinder- und Jugendmedizin, Fachbereich Neonatologie & Pädiatrische Intensivmedizin, Universitätsklinikum Carl Gustav Carus, Dresden
› Institutsangaben
Weitere Informationen

Publikationsverlauf

eingereicht 15. Juli 2019

angenommen nach Überarbeitung 09. August 2019

Publikationsdatum:
11. September 2019 (online)

Zusammenfassung

Eine intrauterine Wachstumsrestriktion (IUGR) betrifft Feten, die ihr intrauterines Wachstumspotenzial nicht nutzen können. Überschneidungen bestehen dabei zur Gruppe der small-for-gestational age (SGA) Kinder, doch sind speziell IUGR-Kinder von kurz- und langfristigen Folgen betroffen. IUGR-Feten haben ein deutlich erhöhtes Frühgeburtlichkeits-Risiko und ein spezielles Risikoprofil im Vergleich zu altersentsprechend gewachsenen Frühgeborenen. Dies umfasst das häufigere Auftreten typischer Komplikationen wie Bronchopulmonale Dysplasie, intraventrikuläre Hämorrhagie und Mekonium-Ileus. Neugeborene mit IUGR scheinen langfristig ein erhöhtes Risiko für Folgeprobleme, wie Zerebralparesen, eingeschränkte Lungenfunktion und Sprachentwicklungsverzögerungen zu haben. Eine transsektorale, interdisziplinäre und multiprofessionelle Betreuung der Schwangeren, Neugeborenen und Säuglinge im Rahmen eines Versorgungspfades ist eine aussichtsreiche neue Versorgungsform. Sie umfasst die frühe Identifizierung von Schwangeren mit einem erhöhten Risiko für eine fetale Wachstumsrestriktion, ggf. die Therapie mit Acetylsalicylsäure, die Risiko-adaptierte Anbindung an die Perinatalzentren mit psychologischen Interventionen und neonatologischen Gesprächen. Ziel des Pfades ist die Vermeidung von Verlegungen in die Perinatologie und Totgeburten. Postnatal steht eine umfassende Betreuung mit besonderem Augenmerk auf die Eltern-Kind-Bindung und Ernährungsoptimierung im Mittelpunkt. Vertiefende Vorsorgeuntersuchungen der ambulanten Kinderärzte dienen dem frühen Aufdecken von Entwicklungsproblemen. Die Wirkungen, Akzeptanz und Kosteneffizienz dieses Pfades werden im Rahmen eines Projektes des Innovationsfonds getestet.

Abstract

Intrauterine growth restriction (IUGR) is present in fetuses that do not achieve their full in-utero growth potential. IUGR needs to be discriminated from small for gestational age (SGA) because IUGR newborns in particular experience long-term side effects from their small growth. IUGR fetuses have a significantly increased risk of prematurity and a distinct risk profile compared to adequate-for-gestational-age preterm newborns. Complications of prematurity are more frequent, including bronchopulmonary dysplasia, intraventricular hemorrhage, and meconium ileus. IUGR newborns are at risk of long-term health issues like cerebral palsy, impaired lung function, and delayed speech development. Interdisciplinary and interprofessional care of IUGR pregnancies in the context of a standardized health care research project is feasible: Pregnant women at risk are identified, early therapy with acetylsalicylic acid is started as indicated, risk-adapted care at level III centers is organized including psychosocial interventions and neonatal consultations. Postnatally, integrated neonatal care focusing on parent-child interaction and optimized nutrition is a hallmark. Afterwards, in-depth pediatric follow-up visits with local pediatricians help to identify growth and neurodevelopment problems early. The effects, acceptance. and cost efficiency of this approach are evaluated prospectively as part of an Innovationsfonds project.

 
  • Literatur

  • 1 German Society of Gynecology and Obstetrics. Intrauterine growth restriction. AWMF (S2k, AWMF-Registry-No 015/080), October 2016
  • 2 Unterscheider J, Daly S, Geary MP. et al. Definition and management of fetal growth restriction: a survey of contemporary attitudes. Eur J Obstet Gynecol Reprod Biol 2014; 174: 41-45
  • 3 Battaglia FC, Lubchenco LO. A practical classification of newborn infants by weight and gestational age. J Pediatr 1967; 71: 159-163
  • 4 Gardosi J, Madurasinghe V, Williams M. et al. Maternal and fetal risk factors for stillbirth: population based study. BMJ 2013; 346: f108
  • 5 Seravalli V, Baschat AA. A uniform management approach to optimize outcome in fetal growth restriction. Obstet Gynecol Clin North Am 2015; 42: 275-288
  • 6 Thorn SR, Rozance PJ, Brown LD. et al. The intrauterine growth restriction phenotype: fetal adaptations and potential implications for later life insulin resistance and diabetes. Semin Reprod Med 2011; 29: 225-236
  • 7 Gluckman PD, Hanson MA, Cooper C. et al. Effect of in utero and early-life conditions on adult health and disease. N Engl J Med 2008; 359: 61-73
  • 8 Pike KC, Hanson MA, Godfrey KM. Developmental mismatch: consequences for later cardiorespiratory health. BJOG 2008; 115: 149-157
  • 9 Schleußner E. Fetale Programmierung. In: Schneider H, Husslein P-W, KTM Schneider. Hrsg Die Geburtshilfe. Berlin, Heidelberg: Springer Berlin Heidelberg; 2011: 617-632
  • 10 Doctor BA, O'Riordan MA, Kirchner HL. et al. Perinatal correlates and neonatal outcomes of small for gestational age infants born at term gestation. American Journal of Obstetrics and Gynecology 2001; 185: 652-659
  • 11 Humbert JR, Abelson H, Hathaway WE. et al. Polycythemia in small for gestational age infants. J Pediatr 1969; 75: 812-819
  • 12 Zeitlin J, Ancel PY, Saurel-Cubizolles MJ. et al. The relationship between intrauterine growth restriction and preterm delivery: an empirical approach using data from a European case-control study. BJOG 2000; 107: 750-758
  • 13 Damodaram M, Story L, Kulinskaya E. et al. Early adverse perinatal complications in preterm growth-restricted fetuses. Aust N Z J Obstet Gynaecol 2011; 51: 204-209
  • 14 Soudée S, Vuillemin L, Alberti C. et al. Fetal growth restriction is worse than extreme prematurity for the developing lung. Neonatology 2014; 106: 304-310
  • 15 Lio A, Rosati P, Pastorino R. et al. Fetal Doppler velocimetry and bronchopulmonary dysplasia risk among growth-restricted preterm infants: an observational study. BMJ Open 2017; 7: e015232
  • 16 Pérez-Cruz M, Cruz-Lemini M, Fernández MT. et al. Fetal cardiac function in late-onset intrauterine growth restriction vs small-for-gestational age, as defined by estimated fetal weight, cerebroplacental ratio and uterine artery Doppler. Ultrasound Obstet Gynecol 2015; 46: 465-471
  • 17 Sehgal A, Allison BJ, Gwini SM. et al. Cardiac Morphology and Function in Preterm Growth Restricted Infants: Relevance for Clinical Sequelae. J Pediatr 2017; 188: 128-134.e2
  • 18 Sehgal A, Allison BJ, Gwini SM. et al. Vascular aging and cardiac maladaptation in growth-restricted preterm infants. Journal of Perinatology 2018; 38: 92-97
  • 19 Yamoto M, Nakazawa Y, Fukumoto K. et al. Risk factors and prevention for surgical intestinal disorders in extremely low birth weight infants. Pediatr Surg Int 2016; 32: 887-893
  • 20 Perger L, Mukhopadhyay D, Komidar L. et al. Maternal pre-eclampsia as a risk factor for necrotizing enterocolitis. J Matern Fetal Neonatal Med 2016; 29: 2098-2103
  • 21 Dubois J, Benders M, Borradori-Tolsa C. et al. Primary cortical folding in the human newborn: an early marker of later functional development. Brain 2008; 131: 2028-2041
  • 22 Tolsa CB, Zimine S, Warfield SK. et al. Early alteration of structural and functional brain development in premature infants born with intrauterine growth restriction. Pediatr Res 2004; 56: 132-138
  • 23 Miller SL, Huppi PS, Mallard C. The consequences of fetal growth restriction on brain structure and neurodevelopmental outcome. The Journal of Physiology 2016; 594: 807-823
  • 24 Gilbert WM, Danielsen B. Pregnancy outcomes associated with intrauterine growth restriction. American Journal of Obstetrics and Gynecology 2003; 188: 1596–9–discussion1599–601
  • 25 Ortigosa Rocha C, Bittar RE, Zugaib M. Neonatal outcomes of late-preterm birth associated or not with intrauterine growth restriction. Obstet Gynecol Int 2010; 2010: 231842
  • 26 Jensen EA, Foglia EE, Dysart KC. et al. Adverse effects of small for gestational age differ by gestational week among very preterm infants. Arch Dis Child Fetal Neonatal Ed 2019; 104: F192-F198
  • 27 Menendez-Castro C, Rascher W, Hartner A. Intrauterine growth restriction - impact on cardiovascular diseases later in life. Molecular and Cellular Pediatrics 2018; 5: 4
  • 28 Ronkainen E, Dunder T, Kaukola T. et al. Intrauterine growth restriction predicts lower lung function at school age in children born very preterm. Arch Dis Child Fetal Neonatal Ed 2016; 101: F412-F417
  • 29 Barker DJ, Godfrey KM, Fall C. et al. Relation of birth weight and childhood respiratory infection to adult lung function and death from chronic obstructive airways disease. BMJ 1991; 303: 671-675
  • 30 O'Callaghan ME, MacLennan AH, Gibson CS. et al. Australian Collaborative Cerebral Palsy Research Group Epidemiologic associations with cerebral palsy. Obstet Gynecol 2011; 118: 576-582
  • 31 Murray E, Fernandes M, Fazel M. et al. Differential effect of intrauterine growth restriction on childhood neurodevelopment: a systematic review. BJOG 2015; 122: 1062-1072
  • 32 Arcangeli T, Thilaganathan B, Hooper R. et al. Neurodevelopmental delay in small babies at term: a systematic review. Ultrasound Obstet Gynecol 2012; 40: 267-275
  • 33 Figueras F, Gratacós E. Update on the diagnosis and classification of fetal growth restriction and proposal of a stage-based management protocol. Fetal Diagn Ther 2014; 36: 86-98
  • 34 Rodriguez A, Tuuli MG, Odibo AO. First-, Second-, and Third-Trimester Screening for Preeclampsia and Intrauterine Growth Restriction. Clin Lab Med 2016; 36: 331-351
  • 35 Neiger R. First Trimester Ultrasound in Prenatal Diagnosis-Part of the Turning Pyramid of Prenatal Care. J Clin Med 2014; 3: 986-996
  • 36 Velauthar L, Plana MN, Kalidindi M. et al. First-trimester uterine artery Doppler and adverse pregnancy outcome: a meta-analysis involving 55,974 women. Ultrasound Obstet Gynecol 2014; 43: 500-507
  • 37 Poon LCY, Syngelaki A, Akolekar R. et al. Combined screening for preeclampsia and small for gestational age at 11–13 weeks. Fetal Diagn Ther 2013; 33: 16-27
  • 38 Poon LC, Rolnik DL, Tan MY. et al. ASPRE trial: incidence of preterm pre-eclampsia in patients fulfilling ACOG and NICE criteria according to risk by FMF algorithm. Ultrasound Obstet Gynecol 2018; 51: 738-742
  • 39 Veglia M, Cavallaro A, Papageorghiou A. et al. Small-for-gestational-age babies after 37 weeks: impact study of risk-stratification protocol. Ultrasound Obstet Gynecol 2018; 52: 66-71
  • 40 Figueras F, Gratacós E. An integrated approach to fetal growth restriction. Best Pract Res Clin Obstet Gynaecol 2017; 38: 48-58
  • 41 Rolnik DL, Wright D, Poon LC. et al. Aspirin versus Placebo in Pregnancies at High Risk for Preterm Preeclampsia. N Engl J Med 2017; 377: 613-622
  • 42 Davis EP, Hankin BL, Glynn LM et al. Prenatal Maternal Stress, Child Cortical Thickness, and Adolescent Depressive Symptoms. Child Dev 2019
  • 43 Steinhardt A, Hinner P, Kühn T. et al. Influences of a dedicated parental training program on parent-child interaction in preterm infants. Early Hum Dev 2015; 91: 205-210
  • 44 O'Brien K, Robson K, Bracht M. et al. FICare Study Group and FICare Parent Advisory Board. Effectiveness of Family Integrated Care in neonatal intensive care units on infant and parent outcomes: a multicentre, multinational, cluster-randomised controlled trial. Lancet Child Adolesc Health 2018; 2: 245-254
  • 45 Gemeinsamer Bundesausschuss. Mutterschafts-Richtlinien. Fassung vom: 10.12.1985 BAnz. Nr. 60 a (Beilage) vom 27.03.1986; Letzte Änderung 22.03.2019 BAnz AT 27.05.2019 B3 2019
  • 46 Gesellschaft für Neonatologie & Pädiatrische Intensivmedizin. Psychosoziale Betreuung von Familien mit Früh- und Neugeborenen. AWMF (S2k, AWMF Registry No. 024/027), November 2018
  • 47 Clapp MA, James KE, Bates SV. et al. Unexpected term NICU admissions: a marker of obstetrical care quality?. American Journal of Obstetrics and Gynecology 2019; 220: 395.e1-395.e12
  • 48 Forman J, Heisler M, Damschroder LJ. et al. Development and application of the RE-AIM QuEST mixed methods framework for program evaluation. Prev Med Rep 2017; 6: 322-328