Subscribe to RSS
DOI: 10.1055/a-1038-5614
Clinical Application of Ultrasound in Intensive Care Unit-Acquired Weakness
Klinische Anwendung des Ultraschalls bei Intensive-Care-Unit-Aquired WeaknessAbstract
Intensive care unit-acquired weakness (ICUAW) is common and prolongs the duration of mechanical ventilation and ICU length of stay and is also a leading cause of physical restriction up to five years later. Developing diagnostic tools that allow early identification and risk stratification in all critically ill patients is vital. Ultrasound is a cheap, reproducible and noninvasive imaging modality that can be used to assess multiple muscle groups. It has advantages over other imaging techniques that entail risks of radiation as well as the logistical concerns of moving critically ill patients. Ultrasound muscle indices can be monitored over time and may serve as predictors for ventilatory weaning and long-term outcomes. The diaphragm is frequently perturbed during critical illness, specifically when mechanical ventilation is initiated. Diaphragm thickness and excursion have been shown to support extubation strategy with the former serving as a marker of inspiratory effort in the absence of more specialist tests. The techniques are reproducible with appropriate training and practice and have been applied in clinical trials. Peripheral skeletal muscle ultrasound has been the subject of intense research in ICU-acquired muscle weakness. The technique has also been found to be reproducible and can serve as a surrogate marker to current volitional and non-volitional tests in the assessment of muscle ICUAW. This article outlines the application of musculoskeletal ultrasound and its role in the early recognition of ICUAW in three distinct muscle groups: (1) diaphragm (2) rectus femoris and introduces the potential of (3) parasternal muscles.
Zusammenfassung
Die Intensive-Care-Unit-Acquired Weakness (ICUAW), eine durch den Aufenthalt auf der Intensivstation erworbene Muskelschwäche, tritt häufig auf und verlängert die Dauer der künstlichen Beatmung und die Intensivliegezeit. Auch bis zu 5 Jahre danach ist sie eine der Hauptursachen für körperliche Einschränkungen. Die Entwicklung von diagnostischen Methoden, die eine frühzeitige Identifizierung und Risikostratifizierung bei allen kritisch kranken Patienten ermöglichen, ist von entscheidender Bedeutung. Die Sonografie ist ein kostengünstiges, reproduzierbares und nichtinvasives bildgebendes Verfahren, mit dem mehrere Muskelgruppen beurteilt werden können. Es hat Vorteile gegenüber anderen Bildgebungsverfahren, bei denen ein Strahlenrisiko besteht und es logistische Bedenken hinsichtlich der Verlegung kritisch kranker Patienten gibt. Die muskulären Marker im Ultraschall können im Zeitverlauf überwacht werden und als Prädiktor für das Weaning und den Langzeit-Outcome dienen. Das Zwerchfell ist bei kritischen Erkrankungen häufig beeinträchtigt, insbesondere wenn eine maschinelle Beatmung eingeleitet wird. Es zeigte sich, dass die Dicke des Zwerchfells und dessen Auslenkung nachweislich die Extubationsstrategie unterstützen, wobei die Dicke als Indikator für die Inspirationsbemühung dient, da spezialisierte Verfahren fehlen. Die Methoden sind mit entsprechender Ausbildung und Praxis reproduzierbar und wurden in klinischen Studien angewendet. Der Ultraschall der peripheren Skelettmuskulatur bei ICUAW war Gegenstand intensiver Forschung. Die Technik war reproduzierbar und kann als Ersatzmarker für die gängigen willentlichen und nichtwillentlichen Tests zur Beurteilung der ICUAW dienen. Die vorliegende Arbeit gibt einen Überblick über Einsatz und Stellenwert des muskuloskelettalen Ultraschalls in der Früherkennung der ICUAW in Bezug auf 3 verschiedene Muskelgruppen: (1) Zwerchfell, (2) M. rectus femoris und (3) parasternale Muskeln.
Publication History
Article published online:
16 April 2020
© Georg Thieme Verlag KG
Stuttgart · New York
-
References
- 1 Herridge MS. et al. Functional Disability 5 Years after Acute Respiratory Distress Syndrome. N Engl J Med 2011; 364: 1293-1304
- 2 De Jonghe B. et al. Paresis acquired in the intensive care unit: a prospective multicenter study. JAMA 2002; 288: 2859-2867
- 3 Goligher EC. et al. Measuring diaphragm thickness with ultrasound in mechanically ventilated patients: feasibility, reproducibility and validity. Intensive Care Med 2015; 41: 642-649
- 4 Goligher EC. et al. Mechanical Ventilation–induced Diaphragm Atrophy Strongly Impacts Clinical Outcomes. Am J Respir Crit Care Med 2018; 197: 204-213
- 5 Vassilakopoulos T, Petrof BJ. Ventilator-induced diaphragmatic dysfunction. Am J Respir Crit Care Med 2004; 169: 336-341
- 6 Sarwal A. et al. Interobserver Reliability of Quantitative Muscle Sonographic Analysis in the Critically Ill Population. J Ultrasound Med 2015; 34: 1191-1200
- 7 Boussuges A, Gole Y, Blanc P. Diaphragmatic motion studied by m-mode ultrasonography: methods, reproducibility, and normal values. Chest 2009; 135: 391-400
- 8 Goligher EC. et al. Evolution of diaphragm thickness during mechanical ventilation: Impact of inspiratory effort. Am J Respir Crit Care Med 2015; 192: 1080-1088
- 9 Matamis D. et al. Sonographic evaluation of the diaphragm in critically ill patients. Technique and clinical applications. Intensive Care Med 2013; 39: 801-810
- 10 McCool FD, Tzelepis GE. Dysfunction of the Diaphragm. N Engl J Med 2012; 366: 932-942
- 11 Goligher EC. et al. Diaphragmatic myotrauma: a mediator of prolonged ventilation and poor patient outcomes in acute respiratory failure. Lancet Respir Med 2018;
- 12 Dubé BP. et al. Ultrasound evaluation of diaphragm function in mechanically ventilated patients: comparison to phrenic stimulation and prognostic implications. Thorax 2017; 72: 811-818
- 13 Sarwal A, Walker FO, Cartwright MS. Neuromuscular ultrasound for evaluation of the diaphragm. Muscle Nerve 2013; 47: 319-329
- 14 Goligher EC. et al. Mechanical ventilation-induced diaphragm atrophy strongly impacts clinical outcomes. Am J Respir Crit Care Med 2018; 197: 204-213
- 15 Zambon M. et al. Assessment of diaphragmatic dysfunction in the critically ill patient with ultrasound: a systematic review. Intensive Care Med 2017; 43: 29-38
- 16 Kim WY, Suh HJ, Hong SB. et al. Diaphragm dysfunction assessed by ultrasonography: Influence on weaning from mechanical ventilation*. Crit Care Med 2011; 39: 2627-2630
- 17 Seymour JM. et al. Ultrasound measurement of rectus femoris cross-sectional area and the relationship with quadriceps strength in COPD. Thorax 2009; 64: 418-423
- 18 de Bruin PF, Ueki J, Watson A. et al. B. Size and strength of the respiratory and quadriceps muscles in patients with chronic asthma. Eur Respir J 1997; 10: 59-64
- 19 Shrikrishna D. et al. Quadriceps wasting and physical inactivity in patients with COPD. Eur Respir J 2012; 40: 1115-1122
- 20 Puthucheary ZA. et al. Acute Skeletal Muscle Wasting in Critical Illness. JAMA 2013; 310: 1591
- 21 Parry SM. et al. Ultrasonography in the intensive care setting can be used to detect changes in the quality and quantity of muscle and is related to muscle strength and function. J Crit Care 2015; 30: 1151.e9-1151.e14
- 22 Connolly B. et al. Ultrasound for the assessment of peripheral skeletal muscle architecture in critical illness: A systematic review. Crit Care Med 2015; 43: 897-905
- 23 Puthucheary ZA. et al. Rectus Femoris Cross-Sectional Area and Muscle Layer Thickness: Comparative Markers of Muscle Wasting and Weakness. Am J Respir Crit Care Med 2017; 195: 136-138
- 24 Mourtzakis M, Parry S, Connolly B. et al. Skeletal muscle ultrasound in critical care: A tool in need of translation. Ann Am Thorac Soc 2017; 14: 1495-1503
- 25 Parry SM, Burtin C, Denehy L. et al. Ultrasound Evaluation of Quadriceps Muscle Dysfunction in Respiratory Disease. 2019;
- 26 Puthucheary ZA. et al. Qualitative Ultrasound in Acute Critical Illness Muscle Wasting. Crit Care Med 2015; 43: 1603-1611
- 27 Cala SJ. et al. Respiratory Ultrasonography of Human Parasternal Intercostal Muscle In Vivo. Ultrasound Med Biol 1998; 24: 313-326
- 28 Walter SD, Eliasziw M, Donner A. Sample size and optimal designs for reliability studies. Stat Med 1998; 17: 101-110
- 29 Vaz S, Falkmer T, Passmore AE. et al. The Case for Using the Repeatability Coefficient When Calculating Test–Retest Reliability. PLoS One 2013; 8: e73990