RSS-Feed abonnieren
DOI: 10.1055/a-1060-0529
Wall Shear Stress Measurement by Ultrafast Vector Flow Imaging for Atherosclerotic Carotid Stenosis
Messung der Wandschubspannung mit ultraschneller Vektorflussanalyse bei atherosklerotischer KarotisstenoseAbstract
Objective Carotid plaque vulnerability assessment could guide the decision to perform endarterectomy. Ultrafast ultrasound imaging (UF) can evaluate local flow velocities over an entire 2D image, allowing measurement of the wall shear stress (WSS). We aimed at evaluating the feasibility of WSS measurement in a prospective series of patients with carotid stenosis.
Methods UF acquisitions, performed with a linear probe, had an effective frame rate of 5000 Hz. The flow velocity was imaged over the entire plaque area. WSS was computed with the vector field speed using the formula: with the blood velocity and μ, the blood viscosity. The WSS measurement method was validated using a calibrated phantom. In vivo, WSS was analyzed in 5 areas of the carotid wall: common carotid artery, plaque ascent, plaque peak, plaque descent, internal carotid artery.
Results Good correlation was found between in vitro measurement and the theoretical WSS values (R2 = 0.95; p < 0.001). 33 patients were prospectively evaluated, with a median carotid stenosis degree of 80 % [75–85]. The maximum WSS value over the cardiac cycle follows the shape of the plaque with an increase during the ascent, reaching its maximum value of 3.25 Pa [2.26–4.38] at the peak of the plaque, and a decrease after passing of the peak (0.93 Pa [0.80–1.19]) lower than the WSS values in the non-stenotic areas (1.47 Pa [1.12–1.77] for the common carotid artery).
Conclusion UF allowed local and direct evaluation of the plaque’s WSS, thus better characterizing local hemodynamics to identify areas of vulnerability.
Key Points:
-
Ultrafast vector Doppler allows calculation of the wall shear stress (WSS) by measuring velocity vectors over the entire 2D image.
-
The setup to measure the WSS has been validated in vitro on a linear flow phantom by comparing measurements to in silico calculations.
-
Applying this method to carotid plaque allows us to better describe the hemodynamic constraints that apply along the entire length of the plaque.
Zusammenfassung
Ziel Die Bewertung der Vulnerabilität der Karotisplaques könnte die Entscheidung für eine Endarteriektomie lenken. Die ultraschnelle Ultraschallbildgebung (UF) kann lokale Strömungsgeschwindigkeiten über ein gesamtes 2D-Bild auswerten und ermöglicht die Messung der Wandschubspannung (WSS). Unser Ziel war die Evaluierung der Durchführbarkeit der WSS-Messung in prospektiv aufeinander folgenden Patienten mit Karotisstenose.
Methoden UF-Aufnahmen, die mit einem Linearschallkopf durchgeführt wurden, hatten eine effektive Bildrate von 5000 Hz. Die Strömungsgeschwindigkeit wurde über den gesamten Plaquebereich abgebildet. Die WSS wurde mit der Vektorfeldgeschwindigkeit wie folgt berechnet: mit als Blutflussgeschwindigkeit und μ als Blutviskosität. Die WSS-Messmethode wurde mittels kalibriertem Phantom validiert. In vivo wurde die WSS in 5 Bereichen der Halsschlagader analysiert: A. carotis communis, Plaqueaufstieg, Plaquespitze, Plaqueabstieg und A. carotis interna.
Ergebnisse Es wurde eine gute Korrelation zwischen der In-vitro-Messung und den theoretischen WSS-Werten (R2 = 0,95; p < 0,001) gefunden. 33 Patienten wurden prospektiv untersucht, mit einem medianen Karotisstenosegrad von 80 % (75–85 %). Der maximale WSS-Wert über dem Herzzyklus folgt der Form der Plaques mit einer Zunahme während des Aufstiegs, der seinen Maximalwert von 3,25 Pa (2,26–4,38) an der Plaquespitze erreicht, und einem Abfall nach Überschreiten der Spitze (0,93 Pa (0,80–1,19)) auf WSS-Werte, die niedriger sind (1,47 Pa (1,12–1,77)) als in den nicht stenotischen Bereichen der A. carotis communis.
Schlussfolgerung Die UF erlaubt eine lokale und direkte Bewertung der WSS der Plaques und charakterisiert so die lokale Hämodynamik besser im Hinblick auf den Nachweis von vulnerablen Regionen.
Kernaussagen:
-
Der ultraschnelle Vektor-Doppler ermöglicht die Berechnung der Wandschubspannung (WSS) durch Messung von Geschwindigkeitsvektoren über das gesamte 2D-Bild.
-
Die Einstellung zur Messung des WSS wird in vitro an einem linearen Strömungsphantom durch den Vergleich mit In-silico-Berechnungen validiert.
-
Die Anwendung dieser Methode auf die Karotisplaques erlaubt uns eine bessere Beschreibung der hämodynamischen Einschränkungen über die gesamte Länge der Plaques.
Key words
carotid plaque - ultrafast ultrasound imaging - vector flow imaging - wall shear stress - plaque’s vulnerabilityPublikationsverlauf
Eingereicht: 26. März 2019
Angenommen: 23. Oktober 2019
Artikel online veröffentlicht:
19. Dezember 2019
© 2019. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Yiu BYS, Lai SSM, Yu ACH. Vector projectile imaging: time-resolved dynamic visualization of complex flow patterns. Ultrasound Med Biol 2014; 40: 2295-2309
- 2 de Weerd M, Greving JP, de Jong AWF. et al. Prevalence of asymptomatic carotid artery stenosis according to age and sex: systematic review and metaregression analysis. Stroke 2009; 40: 1105-1113
- 3 Aboyans V, Ricco JB, Bartelink MLEL. et al. 2017 ESC Guidelines on the Diagnosis and Treatment of Peripheral Arterial Diseases, in collaboration with the European Society for Vascular Surgery (ESVS). Eur Heart J 2017; 39: 763-816
- 4 European Carotid Surgery Trialists’ Collaborative Group. Randomised trial of endarterectomy for recently symptomatic carotid stenosis: final results of the MRC European Carotid Surgery Trial (ECST). Lancet (London, England) 1998; 351: 1379-1387
- 5 Executive Committee for the Asymptomatic Carotid Atherosclerosis Study. Endarterectomy for asymptomatic carotid artery stenosis. Executive Committee for the Asymptomatic Carotid Atherosclerosis Study. JAMA J Am Med Assoc 1995; 273: 1421-1428
- 6 Lovett JK, Gallagher PJ, Hands LJ. et al. Histological correlates of carotid plaque surface morphology on lumen contrast imaging. Circulation 2004; 110: 2190-2197
- 7 Slager CJ, Wentzel JJ, Gijsen FJH. et al. The role of shear stress in the generation of rupture-prone vulnerable plaques. Nat Clin Pract Cardiovasc Med 2005; 2: 401-407
- 8 Groen HC, Gijsen FJH, van der Lugt A. et al. High shear stress influences plaque vulnerability. Neth Heart J 2008; 16: 280-283
- 9 Beach KW, Hatsukami T, Detmer PR. et al. Carotid artery intraplaque hemorrhage and stenotic velocity. Stroke 1993; 24: 314-319
- 10 Tuenter A, Selwaness M, Arias Lorza A. et al. High shear stress relates to intraplaque haemorrhage in asymptomatic carotid plaques. Atherosclerosis 2016; 251: 348-354
- 11 Hariri N, Russell T, Kasper G. et al. Shear rate is a better marker of symptomatic ischemic cerebrovascular events than velocity or diameter in severe carotid artery stenosis. J Vasc Surg 2018; 69: 448-452
- 12 Dong J, Wong KKL, Tu J. Hemodynamics analysis of patient-specific carotid bifurcation: a CFD model of downstream peripheral vascular impedance. Int j numer method biomed eng 2013; 29: 476-491
- 13 Botnar R, Rappitsch G, Scheidegger MB. et al. Hemodynamics in the carotid artery bifurcation: a comparison between numerical simulations and in vitro MRI measurements. J Biomech 2000; 33: 137-144
- 14 Markl M, Wegent F, Zech T. et al. In vivo wall shear stress distribution in the carotid artery: effect of bifurcation geometry, internal carotid artery stenosis, and recanalization therapy. Circ Cardiovasc Imaging 2010; 3: 647-655
- 15 Ku DN, Giddens DP, Zarins CK. et al. Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arteriosclerosis 1985; 5: 293-302
- 16 Sousa LC, Castro CF, António CC. et al. Computational simulation of carotid stenosis and flow dynamics based on patient ultrasound data – A new tool for risk assessment and surgical planning. Adv Med Sci 2016; 61: 32-39
- 17 Leow CH, Tang MX. Spatio-Temporal Flow and Wall Shear Stress Mapping Based on Incoherent Ensemble-Correlation of Ultrafast Contrast Enhanced Ultrasound Images. Ultrasound Med Biol 2018; 44: 134-152
- 18 Montaldo G, Tanter M, Bercoff J. et al. Coherent plane-wave compounding for very high frame rate ultrasonography and transient elastography. IEEE Trans Ultrason Ferroelectr Freq Control 2009; 56: 489-506
- 19 Barnett HJM, Taylor DW, Eliasziw M. et al. Benefit of Carotid Endarterectomy in Patients with Symptomatic Moderate or Severe Stenosis. N Engl J Med 1998; 339: 1415-1425
- 20 Speelman L, Teng Z, Nederveen AJ. et al. MRI-based biomechanical parameters for carotid artery plaque vulnerability assessment. Thromb Haemost 2016; 115: 493-500
- 21 Tang D, Teng Z, Canton G. et al. Sites of rupture in human atherosclerotic carotid plaques are associated with high structural stresses: An in Vivo MRI-based 3D fluid-structure interaction study. Stroke 2009; 40: 3258-3263
- 22 Jia Q, Liu H, Li Y. et al. Combination of Magnetic Resonance Angiography and Computational Fluid Dynamics May Predict the Risk of Stroke in Patients with Asymptomatic Carotid Plaques. Med Sci Monit 2017; 23: 479-488
- 23 Correia M, Provost J, Tanter M. et al. 4D ultrafast ultrasound flow imaging: in vivo quantification of arterial volumetric flow rate in a single heartbeat. Phys Med Biol 2016; 61: L48-L61
- 24 Flesch M, Pernot M, Provost J. et al. 4D in vivo ultrafast ultrasound imaging using a row-column addressed matrix and coherently-compounded orthogonal plane waves. Phys Med Biol 2017; 62: 4571-4588