RSS-Feed abonnieren
DOI: 10.1055/a-1072-5207
A Closer Look at a Small Brain: Transnuchal Ultrasound Facilitates High-Resolution Imaging of the Cerebellum in Preterm Infants
Ein genauerer Blick auf ein kleines Gehirn: Transnuchaler Ultraschall für die hochauflösende Bildgebung des Zerebellums von FrühgeborenenAbstract
Purpose Very preterm infants are at risk for cerebellar injury and impaired cerebellar growth with adverse neurodevelopmental outcome. Ultrasound through the mastoid fontanel (MF) with a curved-array or sector probe is the most established method for the sonographic examination of the cerebellum. The goal of our study was to examine the validity of transnuchal ultrasound through the foramen occipitale magnum (FOM) with a linear probe for monitoring postnatal cerebellar growth.
Methods Retrospective analysis of routine ultrasound scans through FOM and MF in 105 preterm infants born between 23 and 36 weeks of gestation with a birthweight of less than 1500 g.
Results Diameters of the cerebellar hemispheres obtained through the two acoustic windows mastoid fontanel and foramen occipitale magnum showed high correlations (r’s = 0.981 and 0.983, p’s < 0.001). Corrected gestational age was significantly associated with transverse cerebellar diameter (TCD) on the first scan (r = 0.908, p < 0.001) as well as postnatal cerebellar growth (r = 0.920, p < 0.001). Postnatal growth was slightly decreased resulting in cerebellar growth restriction on serial scans. Both associations exceeded the calculated ratio of TCD to head circumference (r = 0.657, p < 0.001) and TCD to biparietal diameter with gestational age (r = 0.705, p < 0.001).
Conclusion Transnuchal ultrasound is feasible for examination of the preterm cerebellum and improves image quality compared to scans through the MF with higher resolution at a very short distance. Monitoring cerebellar growth during early postnatal life via transnuchal ultrasound can help to identify children at high risk for neurodevelopmental impairment.
Zusammenfassung
Ziel Bei extrem Frühgeborenen besteht das Risiko für Kleinhirnschädigungen und für eine Beeinträchtigung des Kleinhirnwachstums mit nachteiligen Auswirkungen auf die neurologische Entwicklung. Ultraschall durch die Mastoid-Fontanelle (MF) mit einer gekrümmten Array- oder Sektorsonde ist die etablierteste Methode zur sonografischen Untersuchung des Kleinhirns. Ziel unserer Studie war es, die Validität von transnuchalem Ultraschall durch das Foramen occipitale magnum (FOM) mittels Linear-Schallkopf zur Überwachung des postnatalen Kleinhirnwachstums zu untersuchen.
Methoden Retrospektive Analyse von Routine-Ultraschalluntersuchungen durch FOM und MF bei 105 Frühgeborenen zwischen 23 und 36 Schwangerschaftswochen mit einem Geburtsgewicht von weniger als 1500 g.
Ergebnisse Die Durchmesser der Kleinhirnhemisphären, die durch die beiden akustischen Fenster von MF und FOM gemessen wurden, zeigten hohe Korrelationen (r’s = 0,981 und 0,983; p < 0,001). Das korrigierte Gestationsalter war signifikant mit dem transversalen Kleinhirndurchmesser (TCD) beim ersten Scan (r = 0,908; p < 0,001) sowie dem postnatalen Kleinhirnwachstum (r = 0,920; p < 0,001) assoziiert. Das postnatale Wachstum war leicht vermindert, was zu einer Einschränkung des Kleinhirnwachstums bei seriellen Scans führte. Beide Assoziationen übertrafen die berechnete Ratio von TCD zum Kopfumfang (r = 0,657; p < 0,001) und von TCD zum biparietalen Durchmesser (r = 0,705; p < 0,001) gegenüber dem Gestationsalter.
Schlussfolgerung Transnuchaler Ultraschall kann für die Untersuchung des Zerebellums des Frühgeborenen eingesetzt werden und verbessert, im Vergleich zu Aufnahmen durch die MF, die Bildqualität bei höherer Auflösung in sehr kurzer Distanz. Die Überwachung des Kleinhirnwachstums mittels transnuchalem Ultraschall in der frühpostnatalen Phase kann helfen, Kinder mit hohem Risiko für neurologische Entwicklungsstörungen zu identifizieren.
Publikationsverlauf
Eingereicht: 17. August 2019
Angenommen: 07. November 2019
Artikel online veröffentlicht:
08. Januar 2020
© 2020. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Deeg KH. Sonographic Diagnosis of Meningoencephalitis in Newborns and Infants. Ultraschall in Med 2018; 39: 132-152
- 2 Deeg KH. Sonographic and Doppler Sonographic Diagnosis of Neonatal Ischemic Stroke. Ultraschall in Med 2017; 38: 360-376
- 3 Limperopoulos C, Bassan H, Gauvreau K. et al. Does cerebellar injury in premature infants contribute to the high prevalence of long-term cognitive, learning, and behavioral disability in survivors?. Pediatrics 2007; 120: 584-593
- 4 Steggerda SJ, Leijser LM, Wiggers-de Bruine FT. et al. Cerebellar injury in preterm infants: incidence and findings on US and MR images. Radiology 2009; 252: 190-199
- 5 Steggerda SJ, van Wezel-Meijler G. Cranial ultrasonography of the immature cerebellum: Role and limitations. Semin Fetal Neonatal Med 2016; 21: 295-304
- 6 Parodi A, Rossi A, Severino M. et al. Accuracy of ultrasound in assessing cerebellar haemorrhages in very low birthweight babies. Arch Dis Child Fetal Neonatal Ed 2015; 100: F289-F292
- 7 Muhlbacher T, Bohner G, Buhrer C. et al. Cerebellar Infarction: Unusual Manifestation with Facial Palsy, Focal Seizures, and Secondary Generalization. Neonatology 2018; 113: 33-36
- 8 Limperopoulos C, Benson CB, Bassan H. et al. Cerebellar hemorrhage in the preterm infant: ultrasonographic findings and risk factors. Pediatrics 2005; 116: 717-724
- 9 Sehgal A, El-Naggar W, Glanc P. et al. Risk factors and ultrasonographic profile of posterior fossa haemorrhages in preterm infants. J Paediatr Child Health 2009; 45: 215-218
- 10 Haines KM, Wang W, Pierson CR. Cerebellar hemorrhagic injury in premature infants occurs during a vulnerable developmental period and is associated with wider neuropathology. Acta Neuropathol Commun 2013; 1: 69
- 11 Stoodley CJ, Limperopoulos C. Structure-function relationships in the developing cerebellum: Evidence from early-life cerebellar injury and neurodevelopmental disorders. Semin Fetal Neonatal Med 2016; 21: 356-364
- 12 Hortensius LM, Dijkshoorn ABC, Ecury-Goossen GM. et al Neurodevelopmental Consequences of Preterm Isolated Cerebellar Hemorrhage: A Systematic Review. Pediatrics 2018; 142: e20180609
- 13 Messerschmidt A, Prayer D, Brugger PC. et al. Preterm birth and disruptive cerebellar development: assessment of perinatal risk factors. Eur J Paediatr Neurol 2008; 12: 455-460
- 14 Sancak S, Gursoy T, Karatekin G. et al. Effect of Intraventricular Hemorrhage on Cerebellar Growth in Preterm Neonates. Cerebellum 2017; 16: 89-94
- 15 Tam EWY. Cerebellar injury in preterm infants. Handb Clin Neurol 2018; 155: 49-59
- 16 Limperopoulos C, Chilingaryan G, Guizard N. et al. Cerebellar injury in the premature infant is associated with impaired growth of specific cerebral regions. Pediatr Res 2010; 68: 145-150
- 17 Limperopoulos C, Soul JS, Gauvreau K. et al. Late gestation cerebellar growth is rapid and impeded by premature birth. Pediatrics 2005; 115: 688-695
- 18 Duncan AF, Bann CM, Dempsey A. et al. Behavioral Deficits at 18–22 Months of Age Are Associated with Early Cerebellar Injury and Cognitive and Language Performance in Children Born Extremely Preterm. J Pediatr 2019; 204: 148-156 e144
- 19 Hintz SR, Barnes PD, Bulas D. et al. Neuroimaging and neurodevelopmental outcome in extremely preterm infants. Pediatrics 2015; 135: e32-e42
- 20 Schmahmann JD. The cerebellum and cognition. Neurosci Lett 2019; 688: 62-75
- 21 Tong KA, Ashwal S, Obenaus A. et al. Susceptibility-weighted MR imaging: a review of clinical applications in children. Am J Neuroradiol 2008; 29: 9-17
- 22 Lee W, Al-Dossary H, Raybaud C. et al. Longitudinal cerebellar growth following very preterm birth. J Magn Reson Imaging 2016; 43: 1462-1473
- 23 Pierson CR, Al Sufiani F. Preterm birth and cerebellar neuropathology. Semin Fetal Neonatal Med 2016; 21: 305-311
- 24 Chang CH, Chang FM, Yu CH. et al. Assessment of fetal cerebellar volume using three-dimensional ultrasound. Ultrasound Med Biol 2000; 26: 981-988
- 25 Imamoglu EY, Gursoy T, Ovali F. et al. Nomograms of cerebellar vermis height and transverse cerebellar diameter in appropriate-for-gestational-age neonates. Early Hum Dev 2013; 89: 919-923
- 26 Volpe JJ. Cerebellum of the premature infant: rapidly developing, vulnerable, clinically important. J Child Neurol 2009; 24: 1085-1104
- 27 Chavez MR, Ananth CV, Smulian JC. et al. Fetal transcerebellar diameter measurement with particular emphasis in the third trimester: a reliable predictor of gestational age. Am J Obstet Gynecol 2004; 191: 979-984
- 28 Holanda-Filho JA, Souza AI, Souza AS. et al. Fetal transverse cerebellar diameter measured by ultrasound does not differ between genders. Arch Gynecol Obstet 2011; 284: 299-302
- 29 Snijders RJ, Nicolaides KH. Fetal biometry at 14–40 weeks’ gestation. Ultrasound Obstet Gynecol 1994; 4: 34-48
- 30 da Graca AL, Cardoso KR, da Costa JM. et al. Assessment of gestational age using cerebellar measurements at cranial ultrasound: what is the best approach?. Early Hum Dev 2013; 89: 1-5
- 31 Tam EW, Miller SP, Studholme C. et al. Differential effects of intraventricular hemorrhage and white matter injury on preterm cerebellar growth. J Pediatr 2011; 158: 366-371