Ultraschall Med 2021; 42(06): 599-606
DOI: 10.1055/a-1143-3091
Original Article

Quantitative Assessment of Fatty Liver using Ultrasound with Normalized Local Variance Technique

Quantitative Beurteilung der Fettleber mittels der „Normalized Local Variance“-Ultraschalltechnik
Jae Seok Bae
1   Radiology, Seoul National University Hospital, Jongno-gu, Korea (the Republic of)
,
Dong Ho Lee
1   Radiology, Seoul National University Hospital, Jongno-gu, Korea (the Republic of)
,
Jae Young Lee
1   Radiology, Seoul National University Hospital, Jongno-gu, Korea (the Republic of)
,
Haeryoung Kim
2   Pathology, Seoul National University Hospital, Jongno-gu, Korea (the Republic of)
,
Su Jong Yu
3   Internal Medicine, Seoul National University Hospital, Jongno-gu, Korea (the Republic of)
,
Jeong-Hoon Lee
3   Internal Medicine, Seoul National University Hospital, Jongno-gu, Korea (the Republic of)
,
Eun Ju Cho
3   Internal Medicine, Seoul National University Hospital, Jongno-gu, Korea (the Republic of)
,
Yun Bin Lee
3   Internal Medicine, Seoul National University Hospital, Jongno-gu, Korea (the Republic of)
,
Joon Koo Han
1   Radiology, Seoul National University Hospital, Jongno-gu, Korea (the Republic of)
,
Byung Ihn Choi
4   Radiology, Chung Ang University Hospital, Seoul, Korea (the Republic of)
› Author Affiliations

Abstract

Purpose To assess the diagnostic performance of the normalized local variance (NLV) ultrasound technique in the detection of the fatty liver using histopathology as a reference standard.

Materials and Methods We prospectively enrolled 194 consecutive patients with clinical suspicion of diffuse liver disease or history of liver transplantation. Conventional grayscale ultrasound and NLV examinations were performed and immediately followed by liver biopsies. The degrees of fatty liver, necroinflammatory activity, and fibrosis stage were evaluated by histopathological assessment. The diagnostic performance of the NLV values in detecting each grade of fatty liver was determined using receiver operating characteristics analyses, and multivariate linear regression analyses were performed to identify variables significantly associated with the NLV values.

Results The number of patients in each degree of fatty liver and hepatic fibrosis was 118/37/26/13 and 81/68/24/6/14 for none/mild/moderate/severe steatosis and F0 / F1/F2 / F3/F4 fibrosis on histopathological examinations, respectively. The area under the receiver operating characteristics curve and optimal cut-off NLV value for detecting fatty liver of varying degrees were 0.911 and 1.095 for ≥ S1, 0.974 and 1.055 for ≥ S2, and 0.954 and 1.025 for ≥ S3, respectively. Multivariate analyses revealed that not fibrosis or inflammation but rather the degree of steatosis was associated with the NLV value.

Conclusion The NLV value demonstrated excellent diagnostic performance for detecting varying degrees of fatty liver, and the degree of steatosis on histopathological examinations was the only significant factor affecting the NLV value.

Zusammenfassung

Ziel Beurteilung der diagnostischen Leistung der Ultraschalltechnik der normalisierten lokalen Varianz („Normalized Local Variance“, NLV) bei der Diagnose der Fettleber mit der Histopathologie als Referenzstandard.

Material und Methoden Prospektiv nahmen wir 194 konsekutive Patienten mit klinischem Verdacht auf eine diffuse Lebererkrankung oder mit Lebertransplantation als Anamnese auf. Konventionelle Graustufen-Ultraschall- und NLV-Untersuchungen wurden durchgeführt und unmittelbar im Anschluss daran erfolgten Leberbiopsien. Der Grad der Fettleber, die nekroinflammatorische Aktivität und das Fibrosestadium wurden durch die Histopathologie beurteilt. Die diagnostische Leistung der NLV-Werte bei der Diagnose des jeweiligen Verfettungsgrades der Leber wurde mittels ROC-Analysen bestimmt; multivariate lineare Regressionsanalysen wurden durchgeführt, um die Variablen zu identifizieren, die signifikant mit den NLV-Werten assoziiert sind.

Ergebnis Die Anzahl der Patienten bei jedem Grad der Fettleber und Leberfibrose betrug 118/37/26/13 für fehlende/milde/moderate/schwere Steatose und 81/68/24/6/14 für F0-/F1-/F2-/F3-/F4-Fibrose in den histopathologischen Untersuchungen. Die Fläche unter der ROC-Kurve betrug 0,911 für ≥ S1, 0,974 für ≥ S2 und 0,954 für ≥ S3 und der optimale Cut-off des NLV-Werts betrug 1,095 für ≥ S1, 1,055 für ≥ S2 und 1,025 für ≥ S3 für die Diagnose des unterschiedlichen Grades der Fettleber. Multivariate Analysen zeigten, dass nicht eine Fibrose oder Entzündung, sondern vielmehr der Grad der Steatose mit dem NLV-Wert assoziiert war.

Schlussfolgerung Der NLV-Wert zeigte eine ausgezeichnete diagnostische Leistung zum Nachweis der unterschiedlichen Grade der Fettleber. Der Steatosegrad in der Histopathologie war der einzige signifikante Faktor, der den NLV-Wert beeinflusste.



Publication History

Received: 09 May 2019

Accepted: 28 February 2020

Article published online:
22 April 2020

© 2020. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Browning JD, Szczepaniak LS, Dobbins R. et al. Prevalence of hepatic steatosis in an urban population in the United States: impact of ethnicity. Hepatology 2004; 40: 1387-1395
  • 2 Angulo P. Nonalcoholic fatty liver disease. N Engl J Med 2002; 346: 1221-1231
  • 3 Noureddin M, Vipani A, Bresee C. et al. NASH Leading Cause of Liver Transplant in Women: Updated Analysis of Indications For Liver Transplant and Ethnic and Gender Variances. Am J Gastroenterol 2018; 113: 1649-1659
  • 4 Farrell GC. Fatty liver disease: NASH and related disorders. Malden, Mass.: Blackwell Pub; 2005
  • 5 Argo CK, Caldwell SH. Epidemiology and natural history of non-alcoholic steatohepatitis. Clin Liver Dis 2009; 13: 511-531
  • 6 Starley BQ, Calcagno CJ, Harrison SA. Nonalcoholic fatty liver disease and hepatocellular carcinoma: a weighty connection. Hepatology 2010; 51: 1820-1832
  • 7 Mellinger JL, Pencina KM, Massaro JM. et al. Hepatic steatosis and cardiovascular disease outcomes: An analysis of the Framingham Heart Study. J Hepatol 2015; 63: 470-476
  • 8 Belfort R, Harrison SA, Brown K. et al. A placebo-controlled trial of pioglitazone in subjects with nonalcoholic steatohepatitis. N Engl J Med 2006; 355: 2297-2307
  • 9 Diehl AM, Day C. Cause, Pathogenesis, and Treatment of Nonalcoholic Steatohepatitis. N Engl J Med 2017; 377: 2063-2072
  • 10 Bravo AA, Sheth SG, Chopra S. Liver biopsy. N Engl J Med 2001; 344: 495-500
  • 11 Ratziu V, Charlotte F, Heurtier A. et al. Sampling variability of liver biopsy in nonalcoholic fatty liver disease. Gastroenterology 2005; 128: 1898-1906
  • 12 Rockey DC, Caldwell SH, Goodman ZD. et al. Liver biopsy. Hepatology 2009; 49: 1017-1044
  • 13 Noureddin M, Lam J, Peterson MR. et al. Utility of magnetic resonance imaging versus histology for quantifying changes in liver fat in nonalcoholic fatty liver disease trials. Hepatology 2013; 58: 1930-1940
  • 14 Lee DH. Imaging evaluation of non-alcoholic fatty liver disease: focused on quantification. Clin Mol Hepatol 2017; 23: 290-301
  • 15 Joseph AE, Dewbury KC, McGuire PG. Ultrasound in the detection of chronic liver disease (the "bright liver"). Br J Radiol 1979; 52: 184-188
  • 16 Ricci C, Longo R, Gioulis E. et al. Noninvasive in vivo quantitative assessment of fat content in human liver. J Hepatol 1997; 27: 108-113
  • 17 Dasarathy S, Dasarathy J, Khiyami A. et al. Validity of real time ultrasound in the diagnosis of hepatic steatosis: a prospective study. J Hepatol 2009; 51: 1061-1067
  • 18 Strauss S, Gavish E, Gottlieb P. et al. Interobserver and intraobserver variability in the sonographic assessment of fatty liver. Am J Roentgenol 2007; 189: W320-W323
  • 19 de Ledinghen V, Vergniol J, Capdepont M. et al. Controlled attenuation parameter (CAP) for the diagnosis of steatosis: a prospective study of 5323 examinations. J Hepatol 2014; 60: 1026-1031
  • 20 Sasso M, Beaugrand M, de Ledinghen V. et al. Controlled attenuation parameter (CAP): a novel VCTE guided ultrasonic attenuation measurement for the evaluation of hepatic steatosis: preliminary study and validation in a cohort of patients with chronic liver disease from various causes. Ultrasound Med Biol 2010; 36: 1825-1835
  • 21 Karlas T, Petroff D, Sasso M. et al. Individual patient data meta-analysis of controlled attenuation parameter (CAP) technology for assessing steatosis. J Hepatol 2017; 66: 1022-1030
  • 22 Burckhardt CB. Speckle in ultrasound B-mode scans. IEEE Trans Sonic Ultrason 1978; 25: 1-6
  • 23 Wagner RF, Smith SW, Sandrik JM. et al. Statistics of speckle in ultrasound B-scans. IEEE Trans Sonic Ultrason 1983; 30: 156-163
  • 24 Tuthill T, Sperry R, Parker KJUI. Deviations from Rayleigh statistics in ultrasonic speckle. 1988 10. 81-89
  • 25 Kleiner DE, Brunt EM, Van Natta M. et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 2005; 41: 1313-1321
  • 26 Bedossa P, Poynard T. An algorithm for the grading of activity in chronic hepatitis C. The METAVIR Cooperative Study Group. Hepatology 1996; 24: 289-293
  • 27 Park YN, Chon CY, Park JB. et al. Histological grading and staging of chronic hepatitis standardized guideline proposed by the Korean Study Group for the Pathology of Digestive Diseases. Korean Journal of Pathology 1999; 33: 337-346
  • 28 Deurenberg P, Deurenberg-Yap M, Guricci S. Asians are different from Caucasians and from each other in their body mass index/body fat per cent relationship. Obes Rev 2002; 3: 141-146
  • 29 Lee DH, Lee JY, Lee KB. et al. Evaluation of Hepatic Steatosis by Using Acoustic Structure Quantification US in a Rat Model: Comparison with Pathologic Examination and MR Spectroscopy. Radiology 2017; 285: 445-453
  • 30 Toyoda H, Kumada T, Kamiyama N. et al. B-mode ultrasound with algorithm based on statistical analysis of signals: evaluation of liver fibrosis in patients with chronic hepatitis C. Am J Roentgenol 2009; 193: 1037-1043