Ultraschall Med 2020; 41(05): 476-498
DOI: 10.1055/a-1246-3004
Continuing Medical Education

How Safe Is the Use of Ultrasound in Prenatal Medicine? Facts and Contradictions. Part 1 – Ultrasound-Induced Bioeffects

Wie sicher ist Ultraschall in der Pränatalmedizin? Fakten und Widersprüche. Teil 1 – Ultraschallinduzierte Bioeffekte
Heiko Dudwiesus
1   Langenfeld, Germany, Richrather Straße 40
,
Eberhard Merz
2   Centre for Ultrasound and Prenatal Medicine, Frankfurt/Main, Germany
› Institutsangaben

Abstract

The “Ordinance on Protection Against the Harmful Effects of Non-Ionizing Radiation in Human Applications” will go into effect at the beginning of 2021 [1]. § 10 of this ordinance prohibits non-medical fetal ultrasound exposure thereby resulting in uncertainty, particularly among affected patients, with respect to the generally accepted theory regarding the lack of ultrasound side effects. Although not a single study has shown a detrimental effect on fetal or child development following exposure to ultrasound, the Federal Ministry for the Environment, Nature Conservation and Nuclear Safety has justified the ban with the purely hypothetical possibility of an unidentified side effect. The first part of the following study shows which ultrasound-induced biophysical effects are known and which dose-dependent threshold values must be taken into consideration. In particular, the study focuses on the well-researched heat effect with some in vivo measurements in humans showing that the actual temperature increase is less than the theoretically calculated values. The planned second part of this study will discuss the non-thermal effects and present the most important epidemiological studies.

Zusammenfassung

Mit dem Jahreswechsel 2020/2021 wird die „Verordnung zum Schutz vor schädlichen Wirkungen nichtionisierender Strahlung bei der Anwendung am Menschen (NiSV)“ in Kraft treten [1]. Da diese Verordnung mit seinem § 10 auch die nichtmedizinische Ultraschallexposition des Fötus unter Strafe stellt, ist insbesondere unter den betroffenen Patientinnen eine Unsicherheit in Bezug auf die allgemein postulierte Nebenwirkungsfreiheit von Ultraschall aufgetreten. Obwohl keine einzige Studie einen schädlichen Einfluss auf die fetale und kindliche Entwicklung nach Ultraschallexposition erkennen lässt, begründet das BMU das Verbot mit der rein hypothetischen Möglichkeit einer bislang nicht erkannten Nebenwirkung. Die nachfolgende Arbeit zeigt im ersten Teil, welche ultraschallinduzierten biophysikalischen Effekte bekannt und welche dosisabhängigen Schwellenwerte zu beachten sind. Dabei steht insbesondere die gut erforschte Wärmewirkung im Mittelpunkt, wobei einige in vivo erfolgten Messungen am Menschen zeigen, dass die tatsächliche Temperaturerhöhung hinter den theoretisch errechneten Werten zurückblieb. Im geplanten zweiten Teil werden die nichtthermischen Wirkungen behandelt sowie die wichtigsten epidemiologischen Studien vorgestellt.



Publikationsverlauf

Eingereicht: 05. August 2020

Angenommen: 11. August 2020

Artikel online veröffentlicht:
05. Oktober 2020

© 2020. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Bundesgesetzblatt Jahrgang 2018 Teil I Nr. 41, ausgegeben zu Bonn am 5. Dezember 2018.
  • 2 IEC 61157: Standard Means for the Reporting of the Acoustic Output of Medical Diagnostic Ultrasonic Equipment, International Electrotechnical Commission, ISBN 2831892570, 9782831892573.
  • 3 Koch C. Thermische Wirkungen von Ultraschall. Ultraschall in Med 2001; 22: 146-152 . doi:10.1055/s-2001-1524
  • 4 Curley MG. Soft tissue temperature rise caused by scanned, diagnostic ultrasound. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control 1993; 40: 59-66
  • 5 BMUS Guidelines for the safe use of Diagnostic Ultrasound Equipment. British Medical Ultrasound Society.
  • 6 Deng C, Xu Q, Apfel R. et al In vitro measurements of inertial cavitation thresholds in human blood. Ultrasound in medicine & biology 1996; 22: 939-948 . doi:10.1016/0301-5629(96)00104-4
  • 7 Hartman C, Child SZ, Mayer R. et al Lung damage from exposure to the fields of an electrohydraulic lithotripter. Ultrasound Med Biol 1990; 16: 675-679 . doi:10.1016/0301-5629(90)90100-q
  • 8 Child SZ, Hartman CL, Schery LA. et al Lung damage from exposure to pulsed ultrasound. Ultrasound Med Biol 1990; 16: 817-825 . doi:10.1016/0301-5629(90)90046-f
  • 9 Tarantal AF, Canfield DR. Ultrasound-induced lung hemorrhage in the monkey. Ultrasound Med Biol 1994; 20: 65-72 . doi:10.1016/0301-5629(94)90018-3
  • 10 Frizzell LA, Chen E, Lee C. Effects of pulsed ultrasound on the mouse neonate: hind limb paralysis and lung hemorrhage. Ultrasound Med Biol 1994; 20: 53-63 . doi:10.1016/0301-5629(94)90017-5
  • 11 Zachary JF, O’Brien Jr WD. Lung lesions induced by continuous- and pulsed-wave (diagnostic) ultrasound in mice, rabbits, and pigs. Vet Pathol 1995; 32: 43-54 . doi:10.1177/030098589503200106
  • 12 Baggs R, Penney DP, Cox C. et al Thresholds for ultrasonically induced lung hemorrhage in neonatal swine. Ultrasound Med Biol 1996; 22: 119-128 . doi:10.1016/0301-5629(95)02035-7
  • 13 Zachary JF, Sempsrott JM, Frizzell LA. et al Superthreshold behavior and threshold estimation of ultrasound-induced lung hemorrhage in adult mice and rats. IEEE Trans Ultrason Ferroelectr Freq Control 2001; 48: 581-592 . doi:10.1109/58.911741
  • 14 O’Brien Jr WD, Yang Y, Simpson DG. et al Threshold estimation of ultrasound-induced lung hemorrhage in adult rabbits and comparison of thresholds in mice, rats, rabbits and pigs. Ultrasound Med Biol 2006; 32: 1793-1804 . doi:10.1016/j.ultrasmedbio.2006.03.011
  • 15 Miller DL, Dong Z, Dou C. et al Pulmonary Capillary Hemorrhage Induced by Different Imaging Modes of Diagnostic Ultrasound. Ultrasound Med Biol 2018; 44: 1012-1021 . doi:10.1016/j.ultrasmedbio.2017.11.006
  • 16 O’Brien Jr WD, Frizzell LA, Weigel RM. et al Ultrasound-induced lung hemorrhage is not caused by inertial cavitation. J Acoust Soc Am 2000; 108: 1290-1297 . doi:10.1121/1.1287706
  • 17 Frizzell LA, Zachary JF, O’Brien Jr WD. Effect of pulse polarity and energy on ultrasound-induced lung hemorrhage in adult rats. J Acoust Soc Am 2003; 113: 2912-2918 . doi:10.1121/1.1559176
  • 18 Miller DL. Mechanisms for Induction of Pulmonary Capillary Hemorrhage by Diagnostic Ultrasound: Review and Consideration of Acoustical Radiation Surface Pressure. Ultrasound Med Biol 2016; 42: 2743-2757 . doi:10.1016/j.ultrasmedbio.2016.08.006
  • 19 Meltzer RS, Adsumelli R, Risher WH. et al Lack of lung hemorrhage in humans after intraoperative transesophageal echocardiography with ultrasound exposure conditions similar to those causing lung hemorrhage in laboratory animals. J Am Soc Echocardiogr 1998; 11: 57-60 . doi:10.1016/s0894-7317(98)70120-8
  • 20 Wood RW, Loomis AL. XXXVIII. The physical and biological effects of high-frequency sound-waves of great intensity. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 1927; 4: 417-436 . doi:10.1080/14786440908564348
  • 21 Harvey E, Loomis AL. High Frequency Sound Waves of Small Intensity and their Biological Effects. Nature 1928; 121: 622-624 . https://doi.org/10.1038/121622a0
  • 22 Bosward KL, Barnett SB, Wood AK. et al Heating of guinea-pig fetal brain during exposure to pulsed ultrasound. Ultrasound Med Biol 1993; 19: 415-424 . doi:10.1016/0301-5629(93)90061-r
  • 23 Horder MM, Barnett SB, Vella GJ. et al Ultrasound-induced temperature increase in guinea-pig fetal brain in utero: third-trimester gestation. Ultrasound Med Biol 1998; 24: 1501-1510 . doi:10.1016/s0301-5629(98)00090-8
  • 24 Duggan PM, Murcott MF, McPhee AJ. et al The influence of variations in blood flow on pulsed doppler ultrasonic heating of the cerebral cortex of the neonatal pig. Ultrasound Med Biol 2000; 26: 647-654 . doi:10.1016/s0301-5629(99)00145-3
  • 25 Taylor GA, Barnewolt CE, Dunning PS. Neonatal pig brain: lack of heating during Doppler US. Radiology 1998; 207: 525-528 . doi:10.1148/radiology.207.2.9577505
  • 26 Duggan PM, Liggins GC, Barnett SB. Ultrasonic heating of the brain of the fetal sheep in utero. Ultrasound Med Biol 1995; 21: 553-560 . doi:10.1016/0301-5629(94)00143-2
  • 27 Miloro P, Martin E, Shaw A. Temperature elevation measured in a tissue-mimicking phantom for transvaginal ultrasound at clinical settings. Ultrasound 2017; 25: 6-15 . doi:10.1177/1742271X16684529
  • 28 Calvert J, Duck F, Clift S. et al Surface heating by transvaginal transducers. Ultrasound Obstet Gynecol 2007; 29: 427-432 . doi:10.1002/uog.3973
  • 29 Vyskocil E, Pfaffenberger S, Kollmann C. et al Thermal effects of diagnostic ultrasound in an anthropomorphic skull model. Ultraschall in Med 2012; 33: e375 . doi:10.1055/s-0032-1313112
  • 30 Mariak Z, Krejza J, Swiercz M. et al Human brain temperature in vivo: lack of heating during color transcranial Doppler ultrasonography. J Neuroimaging 2001; 11: 308-312 . doi:10.1111/j.1552-6569.2001.tb00052.x
  • 31 Schlosser HG, Doepp F, Nolte CH. et al Does routine transcranial duplex ultrasound heat up the patient brain?. Ultraschall in Med 2009; 30: 37-41 . doi:10.1055/s-2008-1027188