1
Department of Radiology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
› Author AffiliationsSupported by:
Berta-Ottenstein-Programme for Advanced Clinician Scientists, Faculty of Medicine, University of Freiburg (Grant to P.M.J.)
Hintergrund Chondrogene Tumoren sind die häufigsten primären Knochentumoren. Maligne chondrogene Tumoren repräsentieren etwa ein Viertel der malignen Knochentumoren. Benigne chondrogene Knochentumoren sind häufige radiologische Zufallsbefunde. Radiologische Parameter können hilfreich sein zur Identifikation, Charakterisierung und Differenzialdiagnostik.
Methode Systematische Literaturrecherche mittels PubMed. Identifikation und kritische Beurteilung von Studien, welche die Bildgebung chondrogener Knochentumoren analysieren oder beschreiben.
Ergebnisse und Schlussfolgerung Nach der World-Health-Organization (WHO)-Klassifikation von 2020 werden benigne, intermediäre (lokal aggressiv oder selten metastasierend) und maligne chondrogene Tumoren unterschieden. Das typische radiologische Bild chondrogen differenzierter Tumoren ist gekennzeichnet durch ein lobuliertes Wachstumsmuster mit einem hohen Signal in T2-gewichteten Sequenzen in der Magnetresonanztomografie (MRT) und durch ein meist ring- und bogenförmiges Verkalkungsmuster in der Projektionsradiografie und der Computertomografie (CT). In Abhängigkeit der Entität ist dieses typische Muster unterschiedlich ausgeprägt. Während hochmaligne Tumoren häufig ein eindeutig malignes Wachstumsmuster zeigen, ist die Differenzierung zwischen benignen und intermediären chondrogenen Tumoren auch interdisziplinär schwierig.
Kernaussagen:
Die WHO unterscheidet gutartige, intermediäre und bösartige chondrogene Knochentumoren.
3
Murphey MD,
Walker EA,
Wilson AJ.
et al
From the archives of the AFIP: imaging of primary chondrosarcoma: radiologic-pathologic correlation. Radiographics 2003; 23: 1245-1278 . doi:10.1148/rg.235035134
4
Lalam R,
Bloem JL,
Noebauer-Huhmann IM.
et al
ESSR Consensus Document for Detection, Characterization, and Referral Pathway for Tumors and Tumorlike Lesions of Bone. Semin Musculoskelet Radiol 2017; 21: 630-647 . doi:10.1055/s-0037-1606130
5
Aoki J,
Sone S,
Fujioka F.
et al
MR of enchondroma and chondrosarcoma: rings and arcs of Gd-DTPA enhancement. J Comput Assist Tomogr 1991; 15: 1011-1016 . doi:10.1097/00004728-199111000-00021
7
Doyle LA.
Sarcoma classification: an update based on the 2013 World Health Organization Classification of Tumors of Soft Tissue and Bone. Cancer 2014; 120: 1763-1774 . doi:10.1002/cncr.28657
8
Amary F,
Perez-Casanova L,
Ye H.
et al
Synovial chondromatosis and soft tissue chondroma: extraosseous cartilaginous tumor defined by FN1 gene rearrangement. Mod Pathol 2019; 32: 1762-1771 . doi:10.1038/s41379-019-0315-8
9
Fletcher C.
World Health Organization, International Agency for Research on Cancer (Hrsg).
WHO classification of tumours of soft tissue and bone. Lyon: IARC Press; 2013 4th ed..
11
Bus MPA,
Campanacci DA,
Albergo JI.
et al
Conventional Primary Central Chondrosarcoma of the Pelvis: Prognostic Factors and Outcome of Surgical Treatment in 162 Patients. J Bone Joint Surg Am 2018; 100: 316-325 . doi:10.2106/JBJS.17.00105
12
van Praag Veroniek VM,
Rueten-Budde AJ,
Ho V.
et al
Incidence, outcomes and prognostic factors during 25 years of treatment of chondrosarcomas. Surg Oncol 2018; 27: 402-408 . doi:10.1016/j.suronc.2018.05.009
13
Murphey MD,
Choi JJ,
Kransdorf MJ.
et al
Imaging of osteochondroma: variants and complications with radiologic-pathologic correlation. Radiographics 2000; 20: 1407-1434 . doi:10.1148/radiographics.20.5.g00se171407
14
Herget GW,
Strohm P,
Rottenburger C.
et al
Insights into Enchondroma, Enchondromatosis and the risk of secondary Chondrosarcoma. Review of the literature with an emphasis on the clinical behaviour, radiology, malignant transformation and the follow up. Neoplasma 2014; 61: 365-378 . doi:10.4149/neo_2014_046
15
Pannier S,
Legeai-Mallet L.
Hereditary multiple exostoses and enchondromatosis. Best Pract Res Clin Rheumatol 2008; 22: 45-54 . doi:10.1016/j.berh.2007.12.004
17
Bernard SA,
Murphey MD,
Flemming DJ.
et al
Improved differentiation of benign osteochondromas from secondary chondrosarcomas with standardized measurement of cartilage cap at CT and MR imaging. Radiology 2010; 255: 857-865 . doi:10.1148/radiol.10082120
18
Imai K,
Suga Y,
Nagatsuka Y.
et al
Pneumothorax caused by costal exostosis. Ann Thorac Cardiovasc Surg 2014; 20: 161-164 . doi:10.5761/atcs.cr.12.01955
19
Herget GW,
Kontny U,
Saueressig U.
et al
Osteochondroma and multiple osteochondromas: recommendations on the diagnostics and follow-up with special consideration to the occurrence of secondary chondrosarcoma. Radiologe 2013; 53: 1125-1136 . doi:10.1007/s00117-013-2571-9
21
Lee K,
Park HY,
Kim KW.
et al
Advances in whole body MRI for musculoskeletal imaging: Diffusion-weighted imaging. J Clin Orthop Trauma 2019; 10: 680-686 . doi:10.1016/j.jcot.2019.05.018
22
Roessner A,
Smolle M,
Schoeder V.
et al
Cartilage tumors: morphology, genetics, and current aspects of target therapy. Pathologe 2020; 41: 143-152 . doi:10.1007/s00292-020-00752-5
27
Altay M,
Bayrakci K,
Yildiz Y.
et al
Secondary chondrosarcoma in cartilage bone tumors: report of 32 patients. J Orthop Sci 2007; 12: 415-423 . doi:10.1007/s00776-007-1152-z
28
Verdegaal SH,
Bovee JV,
Pansuriya TC.
et al
Incidence, predictive factors, and prognosis of chondrosarcoma in patients with Ollier disease and Maffucci syndrome: an international multicenter study of 161 patients. Oncologist 2011; 16: 1771-1779 . doi:10.1634/theoncologist.2011-0200
30
Eefting D,
Schrage YM,
Geirnaerdt MJ.
et al
Assessment of interobserver variability and histologic parameters to improve reliability in classification and grading of central cartilaginous tumors. Am J Surg Pathol 2009; 33: 50-57 . doi:10.1097/PAS.0b013e31817eec2b
31
Skeletal Lesions Interobserver Correlation among Expert Diagnosticians Study G.
Reliability of histopathologic and radiologic grading of cartilaginous neoplasms in long bones. J Bone Joint Surg Am 2007; 89: 2113-2123 . doi:10.2106/JBJS.F.01530
32
Logie CI,
Walker EA,
Forsberg JA.
et al
Chondrosarcoma: A Diagnostic Imager’s Guide to Decision Making and Patient Management. Semin Musculoskelet Radiol 2013; 17: 101-115 . doi:10.1055/s-0033-1342967
34
Ferrer-Santacreu EM,
Ortiz-Cruz EJ,
Gonzalez-Lopez JM.
et al
Enchondroma versus Low-Grade Chondrosarcoma in Appendicular Skeleton: Clinical and Radiological Criteria. J Oncol 2012; 2012: 437958 . doi:10.1155/2012/437958
38
Douis H,
Parry M,
Vaiyapuri S.
et al
What are the differentiating clinical and MRI-features of enchondromas from low-grade chondrosarcomas?. Eur Radiol 2018; 28: 398-409 . doi:10.1007/s00330-017-4947-0
39
Bui KL,
Ilaslan H,
Bauer TW.
et al
Cortical scalloping and cortical penetration by small eccentric chondroid lesions in the long tubular bones: not a sign of malignancy?. Skeletal Radiol 2009; 38: 791-796 . doi:10.1007/s00256-009-0675-0
40
Davies AM,
Patel A,
James SL.
et al
A retrospective validation of an imaging protocol for the management of solitary central cartilage tumours of the proximal humerus and around the knee. Clin Radiol 2019; 74: 962-971 . doi:10.1016/j.crad.2019.08.017
41
Douis H,
Jeys L,
Grimer R.
et al
Is there a role for diffusion-weighted MRI (DWI) in the diagnosis of central cartilage tumors?. Skeletal Radiol 2015; 44: 963-969 . doi:10.1007/s00256-015-2123-7
43
De Coninck T,
Jans L,
Sys G.
et al
Dynamic contrast-enhanced MR imaging for differentiation between enchondroma and chondrosarcoma. Eur Radiol 2013; 23: 3140-3152 . doi:10.1007/s00330-013-2913-z
44
Lisson CS,
Lisson CG,
Flosdorf K.
et al
Diagnostic value of MRI-based 3D texture analysis for tissue characterisation and discrimination of low-grade chondrosarcoma from enchondroma: a pilot study. Eur Radiol 2018; 28: 468-477 . doi:10.1007/s00330-017-5014-6
45
Fritz B,
Muller DA,
Sutter R.
et al
Magnetic Resonance Imaging-Based Grading of Cartilaginous Bone Tumors: Added Value of Quantitative Texture Analysis. Invest Radiol 2018; 53: 663-672 . doi:10.1097/RLI.0000000000000486
46
Subhawong TK,
Winn A,
Shemesh SS.
et al
F-18 FDG PET differentiation of benign from malignant chondroid neoplasms: a systematic review of the literature. Skeletal Radiol 2017; 46: 1233-1239 . doi:10.1007/s00256-017-2685-7
47
Vadi SK,
Mittal BR,
Gorla AKR.
et al
18F-FDG PET/CT in Diagnostic and Prognostic Evaluation of Patients With Suspected Recurrence of Chondrosarcoma. Clin Nucl Med 2018; 43: 87-93 . doi:10.1097/RLU.0000000000001947
48
Annovazzi A,
Anelli V,
Zoccali C.
et al
(18)F-FDG PET/CT in the evaluation of cartilaginous bone neoplasms: the added value of tumor grading. Ann Nucl Med 2019; 33: 813-821 . doi:10.1007/s12149-019-01392-3
50
Afonso PD,
Isaac A,
Villagran JM.
Chondroid Tumors as Incidental Findings and Differential Diagnosis between Enchondromas and Low-grade Chondrosarcomas. Semin Musculoskelet Radiol 2019; 23: 3-18 . doi:10.1055/s-0038-1675550
52
Baek HJ,
Lee SJ,
Cho KH.
et al
Subungual tumors: clinicopathologic correlation with US and MR imaging findings. Radiographics 2010; 30: 1621-1636 . doi:10.1148/rg.306105514
53
DaCambra MP,
Gupta SK,
Ferri-de-Barros F.
Subungual exostosis of the toes: a systematic review. Clin Orthop Relat Res 2014; 472: 1251-1259 . doi:10.1007/s11999-013-3345-4
54
Cocks M,
Helmke E,
Meyers CA.
et al
Bizarre parosteal osteochondromatous proliferation: 16 Cases with a focus on histologic variability. J Orthop 2018; 15: 138-142 . doi:10.1016/j.jor.2018.01.028
55
Adler D,
Aigner T,
von Salis-Soglio G.
et al
Nora’s lesion. Discussion of a rare bone proliferation. Orthopade 2010; 39: 1065-1070 . doi:10.1007/s00132-010-1648-7
56
Cappelle S,
Pans S,
Sciot R.
Imaging features of chondromyxoid fibroma: report of 15 cases and literature review. Br J Radiol 2016; 89: 20160088 . doi:10.1259/bjr.20160088
59
Gutierrez LB,
Link TM,
Horvai AE.
et al
Secondary aneurysmal bone cysts and associated primary lesions: imaging features of 49 cases. Clin Imaging 2020; 62: 23-32 . doi:10.1016/j.clinimag.2020.01.022
64
Yoo HJ,
Hong SH,
Choi JY.
et al
Differentiating high-grade from low-grade chondrosarcoma with MR imaging. Eur Radiol 2009; 19: 3008-3014 . doi:10.1007/s00330-009-1493-4