Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2021; 32(07): 647-654
DOI: 10.1055/a-1293-9655
DOI: 10.1055/a-1293-9655
synpacts
Modular Synthesis of Streptogramin Antibiotics
This work was supported by the National Institute of General Medical Sciences of the National Institutes of Health (R35GM128656). Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the NIH. Additional support for this work was provided by the David and Lucille Packard Foundation.
Abstract
Streptogramins are antibiotics produced by several species of Streptomyces bacteria that are used in both human and veterinary medicine. Group A streptogramins comprise 23-membered macrocyclic polyketide/nonribosomal peptide hybrids for which several innovative fully synthetic routes have been developed. Herein we describe in detail our scalable routes to natural Group A streptogramins and we compare these routes to other reported syntheses.
Key words
antibiotics - natural products - virginiamycin - pristinamycin - modular synthesis - infectious diseasePublication History
Received: 07 October 2020
Accepted: 20 October 2020
Accepted Manuscript online:
20 October 2020
Article published online:
16 November 2020
© 2020. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Office of Infectious Disease; Antibiotic Resistance Threats in the United States, 2013. Centers for Disease Control and Prevention: Atlanta, 2013 (accessed Nov 9, 2020); https://www.cdc.gov/drugresistance/threat-report-2013/pdf/ar-threats-2013-508.pdf
- 1b Burnham JP, Olsen MA, Kollef MH. Infect. Control Hosp. Epidemiol. 2019; 40: 112
- 2 Waglechner N, Wright GD. BMC Biol. 2017; 15: 84
- 3 Wright PM, Seiple IB, Myers AG. Angew. Chem. Int. Ed. 2014; 53: 8840
- 4a Charney J, Fisher WP, Curran C, Machlowitz RA, Tytell AA. Antibiot. Chemother. (Washington D. C.) 1953; 3: 1283
- 4b Vazquez D. In Antibiotics, Vol. 1. Gottlieb D, Shaw PD. Springer; Berlin: 1967
- 5a Mukhtar TA, Wright GD. Chem. Rev. 2005; 105: 529
- 5b Lee VZ. In Comprehensive Medicinal Chemistry II, Vol. 7. Taylor JD, Triggle DJ. Elsevier; Oxford: 2007. Chap. 7.22, 653
- 6a Delgado GJr, Neuhauser MM, Bearden DT, Danziger LH. Pharmacotherapy 2000; 20: 1469
- 6b Pavan B. Curr. Opin. Invest. Drugs (BioMed Cent.) 2000; 1: 173
- 6c Bonfiglio G, Furneri PM. Expert Opin. Invest. Drugs 2001; 10: 185
- 6d Allington DR, Rivey MP. Clin. Ther. 2001; 23: 24
- 7a Politano AD, Sawyer RG. Curr. Opin. Invest. Drugs (BioMed Cent.) 2010; 11: 225
- 7b Pankuch GA, Lin G, Clark C, Appelbaum PC. Antimicrob. Agents Chemother. 2011; 55: 1787
- 8 Sharkey LK. R, O’Neill AJ. ACS Infect. Dis. 2018; 4: 239
- 9 Leclercq R. Courvalin P. 1991; 35: 1267
- 10 Stogios PJ, Kuhn ML, Evdokimova E, Courvalin P, Anderson WF, Savchenko A. Antimicrob. Agents Chemother. 2014; 58: 7083
- 11a Li Q, Seiple IB. J. Am. Chem. Soc. 2017; 139: 13304
- 11b Li Q, Seiple IB. Tetrahedron 2019; 75: 3309
- 11c Li Q, Pellegrino J, Lee DJ, Tran AA, Chaires HA, Wang R, Park JE, Ji K, Chow D, Zhang N, Brilot AF, Biel JT, van Zundert G, Borrelli K, Shinabarger D, Wolfe C, Murray B, Jacobson MP, Mühle E, Chesneau O, Fraser JS, Seiple IB. Nature 2020; 586: 145
- 12 Schlessinger RH, Li Y.-J. J. Am. Chem. Soc. 1996; 118: 3301
- 13a Tavares F, Lawson JP, Meyers AI. J. Am. Chem. Soc. 1996; 118: 3303
- 13b Dvorak CA, Schmitz WD, Poon DJ, Pryde DC, Lawson JP, Amos RA, Meyers AI. Angew. Chem. Int. Ed. 2000; 39: 1664
- 14a Wu J, Panek JS. Angew. Chem. Int. Ed. 2010; 49: 6165
- 14b Wu J, Panek JS. J. Org. Chem. 2011; 76: 9900
- 15a Entwistle DA, Jordan SI, Montgomery J, Pattenden G. J. Chem. Soc., Perkin Trans. 1 1996; 1315
- 15b Ghosh AK, Liu W. J. Org. Chem. 1997; 62: 7908
- 15c Entwistle DA, Jordan SI, Montgomery J, Pattenden G. Synthesis 1998;
- 15d Breuilles P, Uguen D. Tetrahedron Lett. 1998; 39: 3149
- 16 Simsek S, Kalesse M. Tetrahedron Lett. 2009; 50: 3485
- 17 Ochiai M, Inenaga M, Nagao Y, Moriarty RM, Vaid RK, Duncan MP. Tetrahedron Lett. 1988; 29: 6917
- 18a Nagao Y, Hagiwara Y, Kumagai T, Ochiai M, Inoue T, Hashimoto K, Fujita E. J. Org. Chem. 1986; 51: 2391
- 18b Romo D, Choi NS, Li S, Buchler I, Shi Z, Liu JO. J. Am. Chem. Soc. 2004; 126: 10582
- 19 Wood RD, Ganem B. Tetrahedron Lett. 1983; 24: 4391
- 20 Devos A, Remion J, Frisque-Hesbain A.-M, Colens A, Ghosez L. J. Chem. Soc., Chem. Commun. 1979; 1180
- 21 Heravi MM, Hashemi E, Azimian F. Tetrahedron 2014; 70: 7
- 22 Liebeskind LS, Fengl RW. J. Org. Chem. 1990; 55: 5359
- 23a Hicks JD, Hyde AM, Martinez Cuezva A, Buchwald SL. J. Am. Chem. Soc. 2009; 131: 16720
- 23b Li L, Wang C.-Y, Huang R, Biscoe MR. Nat. Chem. 2013; 5: 607
- 23c Zhu F, Rourke MJ, Yang T, Rodriguez J, Walczak MA. J. Am. Chem. Soc. 2016; 138: 12049
- 24 Chen K.-M, Hardtmann GE, Prasad K, Repič O, Shapiro MJ. Tetrahedron Lett. 1987; 28: 155
- 25a Metathesis in Natural Product Synthesis: Strategies, Substrates and Catalysts. Cossy J, Arseniyadis S, Meyer C. Wiley-VCH; Weinheim: 2010
- 25b van Lierop BJ, Limmiss JA. M, Fogg DE. In Olefin Metathesis: Theory and Practice . Grela K. Wiley; Hoboken: 2014. Chap. 3, 85
- 25c Grubbs RH. Handbook of Metathesis, 2nd ed. Wiley-VCH; Weinheim: 2015
- 26a Grubbs RH, Miller SJ, Fu GC. Acc. Chem. Res. 1995; 28: 446
- 26b Nicolaou KC, Bulger PG, Sarlah D. Angew. Chem. Int. Ed. 2005; 44: 4490
- 26c Dhambri CL, Sanogo LA. Y, Zeghbib R, Othman RB, Lannou M.-I, Sprom G, Ardisson J. Nat. Prod. Rep. 2018; 35: 105
- 26d Ogba OM, Warner NC, O’Leary DJ, Grubbs RH. Chem. Soc. Rev. 2018; 47: 4510
For the structure, synthesis, and initial applications of JackiePhos, see:
For applications of JackiePhos in Stille reactions, see:
For representative works on RCM, see:
For representative reviews on RCM: