Subscribe to RSS
DOI: 10.1055/a-1307-3963
Periphere Nervenrekonstruktion – Diagnostik als Grundlage der Entscheidungsfindung – Bericht des Consensus-Workshops im Rahmen der 35. Jahrestagung der Deutschsprachigen Gemeinschaft für Mikrochirurgie der peripheren Nerven und Gefäße (DAM)
Peripheral nerve reconstruction – diagnostics as a basis for decision-making: report of the Consensus Workshop at the 35th Meeting of the DAM
Zusammenfassung
Im Frühstadium von Nervenläsionen stellt die klinische Differenzierung zwischen Neurapraxie, Axonotmesis und Neurotmesis oftmals eine große Herausforderung dar. Vor allem im Frühstadium von Nervenläsionen ist eine korrekte Klassifizierung des Schädigungstyps jedoch von essenzieller Bedeutung, da hiermit das therapeutische Konzept, insbesondere das operative Vorgehen und damit die Prognose, maßgebend bestimmt werden. Neben einer ausführlichen klinischen Statuierung und Anamneseerhebung bedarf es zur Präzisierung der Diagnose den Einsatz ergänzender elektrophysiologischer (funktioneller) und/oder bildgebender Untersuchungen. Eine elektrophysiologische Diagnostik kann hierbei Auskunft über Lokalisation, Schweregrad, Verlauf, Schädigungstyp und einer beginnenden oder stattgehabten Reinnervation geben. Präoperativ sollten hinsichtlich der funktionellen Diagnostik eine Neurografie, Nadel-Elektromyografie (EMG) und ggf. evozierte Potentiale (EP) und bildgebend eine Nervensonografie oder Magnetresonanztomografie (MRT) durchgeführt werden. Ergänzend kann eine EMG auch intraoperativ erfolgen.
Abstract
In the early stage of nerve lesions, the clinical differentiation between neurapraxia, axonotmesis and neurotmesis often presents a big challenge. Especially in the early stage, however, it is crucial to correctly classify the type of damage because this is what essentially determines the therapeutic concept, in particular the surgical approach and, therefore, the prognosis. A precise diagnosis not only requires detailed clinical assessment and medical history taking, but also the use of additional electrophysiological (functional) and/or imaging examinations. Electrophysiological diagnostic tests may provide information ion localization, severity, course, type of damage and incipient or past reinnervation. Preoperative functional diagnostic measures should include neurography, needle electromyography (EMG) and, if needed, evoked potentials (EP), while imaging procedures should include neural sonography and magnetic resonance imaging (MRI). As a complimentary procedure, EMG may also be performed during surgery.
Schlüsselwörter
Dekompression - Chirurgie der peripheren Nerven - Plexuschirurgie beim Erwachsenen - Nervenregeneration - experimentelle ChirurgiePublication History
Received: 11 August 2020
Accepted: 21 October 2020
Article published online:
15 April 2021
© 2021. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 Kouyoumdjian JA. Peripheral nerve injuries: a retrospective survey of 456 cases. Muscle Nerve 2006; 34: 785-788
- 2 Uzun N, Tanriverdi T, Savrun FK. et al. Traumatic peripheral nerve injuries: demographic and electrophysiologic findings of 802 patients from a developing country. J Clin Neuromuscul Dis 2006; 7: 97-103
- 3 Radtke C, Vogt PM. [Nerve injuries and posttraumatic therapy]. Unfallchirurg 2014; 117: 539-555 quiz 556.
- 4 Waller A. Experiments on the glossopharyngeal and hypoglossal nerves of the frog and observations produced thereby in the structure of their primitive fibers. Philos Trans R Soc London. 1850
- 5 Seddon HJ. Three types of nerve injury. Brain 1943; 66: 237-288
- 6 Sunderland S. A classification of peripheral nerve injuries producing loss of function. Brain 1951; 74: 491-516
- 7 Millesi H. Chirurgie der peripheren Nerven. München: Urban & Schwarzenberg; 1992
- 8 Compston A. Aids to the investigation of peripheral nerve injuries. Medical Research Council: Nerve Injuries Research Committee. His Majesty’s Stationery Office: 1942; By Michael O’Brien for the Guarantors of Brain. Saunders Elsevier. Brain 2010; 133: 2838-2844
- 9 Weinstein S. Fifty years of somatosensory research: from the Semmes-Weinstein monofilaments to the Weinstein Enhanced Sensory Test. J Hand Ther 1993; 6: 11-22 discussion 50
- 10 Moberg E. Objective methods for determining the functional value of sensibility in the hand. J Bone Joint Surg Br 1958; 40-B: 454-476
- 11 Irwin MS, Gilbert SE, Terenghi G. et al. Cold intolerance following peripheral nerve injury. Natural history and factors predicting severity of symptoms. J Hand Surg Br 1997; 22: 308-316
- 12 Ruijs AC, Jaquet JB, Daanen HA. et al. Cold intolerance of the hand measured by the CISS questionnaire in a normative study population. J Hand Surg Br 2006; 31: 533-536
- 13 Bischoff Cea. EMG NLG. Stuttgart · New York: Georg Thieme Verlag; 2014
- 14 AWMF. Leitlinie S3. In, Registernummer 005–010. 2013
- 15 Kartush JM. Electroneurography and intraoperative facial monitoring in contemporary neurotology. Otolaryngol Head Neck Surg 1989; 101: 496-503
- 16 Burg D, Infanger M, Meuli-Simmen C. et al. [Methods, indications and validation of intraoperative nerve conductivity testing]. Handchir Mikrochir Plast Chir 2002; 34: 3-16
- 17 Spinner RJ, Kline DG. Surgery for peripheral nerve and brachial plexus injuries or other nerve lesions. Muscle Nerve 2000; 23: 680-695
- 18 Midha R, Grochmal J. Surgery for nerve injury: current and future perspectives. J Neurosurg 2019; 130: 675-685
- 19 Buchner H. Praxisbuch Evozierte Potenziale. Stuttgart: Thieme; 2014
- 20 Sloan TB, Heyer EJ. Anesthesia for intraoperative neurophysiologic monitoring of the spinal cord. J Clin Neurophysiol 2002; 19: 430-443
- 21 Antoniadis G, Kretschmer T, Pedro MT. et al. Iatrogene Nervenläsionen. Deutsches Ärzteblatt 2014; 111
- 22 Solanki C, Socolovsky M, Devi BI. et al. Nerve repair: Bridging the gap from “limp” to “limb”. Neurol India 2019; 67: S16-S19
- 23 Ramachandran S, Midha R. Recent advances in nerve repair. Neurol India 2019; 67: S106-S114
- 24 Alaqeel A, Alshomer F. High resolution ultrasound in the evaluation and management of traumatic peripheral nerve injuries: review of the literature. Oman Med J 2014; 29: 314-319
- 25 Gruber H, Glodny B, Bendix N. et al. High-resolution ultrasound of peripheral neurogenic tumors. Eur Radiol 2007; 17: 2880-2888
- 26 Du R, Auguste KI, Chin CT. et al. Magnetic resonance neurography for the evaluation of peripheral nerve, brachial plexus, and nerve root disorders. J Neurosurg 2010; 112: 362-371
- 27 Visser LH, Smidt MH, Lee ML. High-resolution sonography versus EMG in the diagnosis of carpal tunnel syndrome. J Neurol Neurosurg Psychiatry 2008; 79: 63-67
- 28 Schwarz D, Pedro MT, Brand C. et al. [Nerve injuries and traumatic lesions of the brachial plexus : Imaging diagnostics and therapeutic options]. Radiologe 2017; 57: 184-194
- 29 Zaidman CM, Seelig MJ, Baker JC. et al. Detection of peripheral nerve pathology: comparison of ultrasound and MRI. Neurology 2013; 80: 1634-1640
- 30 Fan YL, Othman MI, Dubey N. et al. Magnetic resonance imaging of traumatic and non-traumatic brachial plexopathies. Singapore Med J 2016; 57: 552-560
- 31 Chappell KE, Robson MD, Stonebridge-Foster A. et al. Magic angle effects in MR neurography. AJNR Am J Neuroradiol 2004; 25: 431-440
- 32 Kastel T, Heiland S, Baumer P. et al. Magic angle effect: a relevant artifact in MR neurography at 3 T?. AJNR Am J Neuroradiol 2011; 32: 821-827
- 33 Eppenberger P, Chhabra A, Andreisek G. Magnetic resonance neurography – imaging of peripheral nerves. Radiol Up2date 2012; 12: 339-355
- 34 Schwarz D, Weiler M, Pham M. et al. Diagnostic signs of motor neuropathy in MR neurography: nerve lesions and muscle denervation. Eur Radiol 2015; 25: 1497-1503
- 35 Kronlage M, Baumer P, Pitarokoili K. et al. Large coverage MR neurography in CIDP: diagnostic accuracy and electrophysiological correlation. J Neurol 2017; 264: 1434-1443
- 36 Morisaki S, Kawai Y, Umeda M. et al. In vivo assessment of peripheral nerve regeneration by diffusion tensor imaging. J Magn Reson Imaging 2011; 33: 535-542
- 37 Lehmann HC, Zhang J, Mori S. et al. Diffusion tensor imaging to assess axonal regeneration in peripheral nerves. Exp Neurol 2010; 223: 238-244
- 38 Ho MJ, Manoliu A, Kuhn FP. et al. Evaluation of Reproducibility of Diffusion Tensor Imaging in the Brachial Plexus at 3.0 T. Invest Radiol 2017; 52: 482-487
- 39 Eppenberger P, Andreisek G, Chhabra A. Magnetic resonance neurography: diffusion tensor imaging and future directions. Neuroimaging Clin N Am 2014; 24: 245-256
- 40 Chhabra A, Lee PP, Bizzell C. et al. 3 Tesla MR neurography – technique, interpretation, and pitfalls. Skeletal Radiol 2011; 40: 1249-1260
- 41 Tagliafico A, Bignotti B, Tagliafico G. et al. Peripheral nerve MRI: precision and reproducibility of T2*-derived measurements at 3.0-T: a feasibility study. Skeletal Radiol 2015; 44: 679-686
- 42 Sirvanci M, Kara B, Duran C. et al. Value of perineural edema/inflammation detected by fat saturation sequences in lumbar magnetic resonance imaging of patients with unilateral sciatica. Acta Radiol 2009; 50: 205-211
- 43 Chhabra A, Thawait GK, Soldatos T. et al. High-resolution 3T MR neurography of the brachial plexus and its branches, with emphasis on 3D imaging. AJNR Am J Neuroradiol 2013; 34: 486-497
- 44 Vaeggemose M, Pham M, Ringgaard S. et al. Magnetic Resonance Neurography Visualizes Abnormalities in Sciatic and Tibial Nerves in Patients With Type 1 Diabetes and Neuropathy. Diabetes 2017; 66: 1779-1788
- 45 Kneser U, Horch RE, Lehnhardt M. Grundkurs Mikrochirurgie. Springer-Verlag; Berlin Heidelberg: 2016
- 46 Gordon T, English AW. Strategies to promote peripheral nerve regeneration: electrical stimulation and/or exercise. Eur J Neurosci 2016; 43: 336-350
- 47 Modlin M, Forstner C, Hofer C. et al. Electrical stimulation of denervated muscles: first results of a clinical study. Artif Organs 2005; 29: 203-206
- 48 Morris-Rosendahl D. Wenn Neuronen sich verlaufen. In. Freiburg: BioRegion; 2019