Subscribe to RSS
DOI: 10.1055/a-1308-3476
Role of Regular Physical Exercise in Tumor Vasculature: Favorable Modulator of Tumor Milieu
Abstract
The tumor vessel network has been investigated as a precursor of an inhospitable tumor microenvironment, including its repercussions in tumor perfusion, oxygenation, interstitial fluid pressure, pH, and immune response. Dysfunctional tumor vasculature leads to the extravasation of blood to the interstitial space, hindering proper perfusion and causing interstitial hypertension. Consequently, the inadequate delivery of oxygen and clearance of by-products of metabolism promote the development of intratumoral hypoxia and acidification, hampering the action of immune cells and resulting in more aggressive tumors. Thus, pharmacological strategies targeting tumor vasculature were developed, but the overall outcome was not satisfactory due to its transient nature and the higher risk of hypoxia and metastasis. Therefore, physical exercise emerged as a potential favorable modulator of tumor vasculature, improving intratumoral vascularization and perfusion. Indeed, it seems that regular exercise practice is associated with lasting tumor vascular maturity, reduced vascular resistance, and increased vascular conductance. Higher vascular conductance reduces intratumoral hypoxia and increases the accessibility of circulating immune cells to the tumor milieu, inhibiting tumor development and improving cancer treatment. The present paper describes the implications of abnormal vasculature on the tumor microenvironment and the underlying mechanisms promoted by regular physical exercise for the re-establishment of more physiological tumor vasculature.
Publication History
Received: 17 July 2020
Accepted: 26 October 2020
Article published online:
11 December 2020
© 2020. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Fan F, Schimming A, Jaeger D. et al. Targeting the tumor microenvironment: Focus on angiogenesis. J Oncol 2012; 2012: 281261 DOI: 10.1155/2012/281261.
- 2 Endrich B, Reinhold HS, Gross JF. et al. Tissue perfusion inhomogeneity during early tumor growth in rats. J Natl Cancer Inst 1979; 62: 387-395
- 3 Hendriksen EM, Span PN, Schuuring J. et al. Angiogenesis, hypoxia and VEGF expression during tumour growth in a human xenograft tumour model. Microvasc Res 2009; 77: 96-103 DOI: 10.1016/j.mvr.2008.11.002.
- 4 Jain RK. Delivery of novel therapeutic agents in tumors: Physiological barriers and strategies. J Natl Cancer Inst 1989; 81: 570-576 DOI: 10.1093/jnci/81.8.570.
- 5 Schaaf MB, Garg AD, Agostinis P. Defining the role of the tumor vasculature in antitumor immunity and immunotherapy. Cell Death Dis 2018; 9: 115 DOI: 10.1038/s41419-017-0061-0.
- 6 Li X, Li Y, Lu W. et al. The tumor vessel targeting strategy: A double-edged sword in tumor metastasis. Cells 2019; 8: 1602 DOI: 10.3390/cells8121602.
- 7 Zhang X, Ashcraft KA, Betof Warner A. et al. Can exercise-induced modulation of the tumor physiologic microenvironment improve antitumor immunity?. Cancer Res 2019; 79: 2447-2456 DOI: 10.1158/0008-5472.CAN-18-2468.
- 8 Maj E, Papiernik D, Wietrzyk J. Antiangiogenic cancer treatment: The great discovery and greater complexity (Review). Int J Oncol 2016; 49: 1773-1784 DOI: 10.3892/ijo.2016.3709.
- 9 Horsman MR, Siemann DW. Pathophysiologic effects of vascular-targeting agents and the implications for combination with conventional therapies. Cancer Res 2006; 66: 11520-11539 DOI: 10.1158/0008-5472.CAN-06-2848.
- 10 Schadler KL, Thomas NJ, Galie PA. et al. Tumor vessel normalization after aerobic exercise enhances chemotherapeutic efficacy. Oncotarget 2016; 7: 65429-65440 DOI: 10.18632/oncotarget.11748.
- 11 Ashcraft KA, Warner AB, Jones LW. et al. Exercise as adjunct therapy in cancer. Semin Radiat Oncol 2019; 29: 16-24 DOI: 10.1016/j.semradonc.2018.10.001.
- 12 Gunnell AS, Joyce S, Tomlin S. et al. Physical activity and survival among long-term cancer survivor and non-cancer cohorts. Front Public Health 2017; 5: 19 DOI: 10.3389/fpubh.2017.00019.
- 13 Siemann DW, Horsman MR. Modulation of the tumor vasculature and oxygenation to improve therapy. Pharmacol Ther 2015; 153: 107-124 DOI: 10.1016/j.pharmthera.2015.06.006.
- 14 Saman H, Raza SS, Uddin S. et al. Inducing angiogenesis, a key step in cancer vascularization, and treatment approaches. Cancers (Basel) 2020; 12: 1172 DOI: 10.3390/cancers12051172.
- 15 Lugano R, Ramachandran M, Dimberg A. Tumor angiogenesis: Causes, consequences, challenges and opportunities. Cell Mol Life Sci 2020; 77: 1745-1770 DOI: 10.1007/s00018-019-03351-7.
- 16 Dvorak HF. Angiogenesis: Update 2005. J Thromb Haemost 2005; 3: 1835-1842 DOI: 10.1111/j.1538-7836.2005.01361.x.
- 17 Nagy JA, Chang SH, Shih SC. et al. Heterogeneity of the tumor vasculature. Semin Thromb Hemost 2010; 36: 321-331 DOI: 10.1055/s-0030-1253454.
- 18 Denekamp J. The tumour microcirculation as a target in cancer therapy: A clearer perspective. Eur J Clin Invest 1999; 29: 733-736 DOI: 10.1046/j.1365-2362.1999.00558.x.
- 19 Denekamp J, Hill S. Angiogenic attack as a therapeutic strategy for cancer. Radiother Oncol 1991; 20: 103-112 DOI: 10.1016/0167-8140(91)90196-n.
- 20 Hinnen P, Eskens FA. Vascular disrupting agents in clinical development. Br J Cancer 2007; 96: 1159-1165 DOI: 10.1038/sj.bjc.6603694.
- 21 Bridges E, Harris AL. Vascular-promoting therapy reduced tumor growth and progression by improving chemotherapy efficacy. Cancer Cell 2015; 27: 7-9 DOI: 10.1016/j.ccell.2014.12.009.
- 22 Rajendran P, Rengarajan T, Thangavel J. et al. The vascular endothelium and human diseases. Int J Biol Sci 2013; 9: 1057-1069 DOI: 10.7150/ijbs.7502.
- 23 Siemann DW. The unique characteristics of tumor vasculature and preclinical evidence for its selective disruption by tumor-vascular disrupting agents. Cancer Treat Rev 2011; 37: 63-74 DOI: 10.1016/j.ctrv.2010.05.001.
- 24 Horsman MR, Murata R. Combination of vascular targeting agents with thermal or radiation therapy. Int J Radiat Oncol Biol Phys 2002; 54: 1518-1523 DOI: 10.1016/s0360-3016(02)03926-3.
- 25 Seidi K, Jahanban-Esfahlan R, Zarghami N. Tumor rim cells: From resistance to vascular targeting agents to complete tumor ablation. Tumour Biol 2017; 39: 1010428317691001 DOI: 10.1177/1010428317691001.
- 26 Rajabi M, Mousa SA. The role of angiogenesis in cancer treatment. Biomedicines 2017; 5: 34 DOI: 10.3390/biomedicines5020034.
- 27 Teleanu RI, Chircov C, Grumezescu AM. et al. Tumor angiogenesis and anti-angiogenic strategies for cancer treatment. J Clin Med 2019; 9-84 DOI: 10.3390/jcm9010084.
- 28 Guyot M, Hilmi C, Ambrosetti D. et al. Targeting the pro-angiogenic forms of VEGF or inhibiting their expression as anti-cancer strategies. Oncotarget 2017; 8: 9174-9188 DOI: 10.18632/oncotarget.13942.
- 29 Kunkel P, Ulbricht U, Bohlen P. et al. Inhibition of glioma angiogenesis and growth in vivo by systemic treatment with a monoclonal antibody against vascular endothelial growth factor receptor-2. Cancer Res 2001; 61: 6624-6628
- 30 Shaheen RM, Tseng WW, Vellagas R. et al. Effects of an antibody to vascular endothelial growth factor receptor-2 on survival, tumor vascularity, and apoptosis in a murine model of colon carcinomatosis. Int J Oncol 2001; 18: 221-226
- 31 Wedge SR, Ogilvie DJ, Dukes M. et al. ZD6474 inhibits vascular endothelial growth factor signaling, angiogenesis, and tumor growth following oral administration. Cancer Res 2002; 62: 4645-4655
- 32 Beecken WD, Fernandez A, Joussen AM. et al. Effect of antiangiogenic therapy on slowly growing, poorly vascularized tumors in mice. J Natl Cancer Inst 2001; 93: 382-387 DOI: 10.1093/jnci/93.5.382.
- 33 Batchelor TT, Gerstner ER, Emblem KE. et al. Improved tumor oxygenation and survival in glioblastoma patients who show increased blood perfusion after cediranib and chemoradiation. Proc Natl Acad Sci USA 2013; 110: 19059-19064 DOI: 10.1073/pnas.1318022110.
- 34 Tong RT, Boucher Y, Kozin SV. et al. Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors. Cancer Res 2004; 64: 3731-3736 DOI: 10.1158/0008-5472.CAN-04-0074.
- 35 Dvorak HF. Vascular permeability factor/vascular endothelial growth factor: A critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy. J Clin Oncol 2002; 20: 4368-4380 DOI: 10.1200/JCO.2002.10.088.
- 36 Siemann DW, Chaplin DJ, Horsman MR. Vascular-targeting therapies for treatment of malignant disease. Cancer 2004; 100: 2491-2499 DOI: 10.1002/cncr.20299.
- 37 Ribatti D, Annese T, Ruggieri S. et al. Limitations of anti-angiogenic treatment of tumors. Transl Oncol 2019; 12: 981-986 DOI: 10.1016/j.tranon.2019.04.022.
- 38 Stebbing J, Waters L, Davies L. et al. Incidence of cancer in individuals receiving chronic zopiclone or eszopiclone requires prospective study. J Clin Oncol 2005; 23: 8134-8136 DOI: 10.1200/JCO.2005.03.5881.
- 39 Nakahara T, Norberg SM, Shalinsky DR. et al. Effect of inhibition of vascular endothelial growth factor signaling on distribution of extravasated antibodies in tumors. Cancer Res 2006; 66: 1434-1445 DOI: 10.1158/0008-5472.CAN-05-0923.
- 40 Morgan B, Thomas AL, Drevs J. et al. Dynamic contrast-enhanced magnetic resonance imaging as a biomarker for the pharmacological response of PTK787/ZK 222584, an inhibitor of the vascular endothelial growth factor receptor tyrosine kinases, in patients with advanced colorectal cancer and liver metastases: Results from two phase I studies. J Clin Oncol 2003; 21: 3955-3964 DOI: 10.1200/JCO.2003.08.092.
- 41 Ebos JM, Lee CR, Cruz-Munoz W. et al. Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell 2009; 15: 232-239 DOI: 10.1016/j.ccr.2009.01.021.
- 42 Paez-Ribes M, Allen E, Hudock J. et al. Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell 2009; 15: 220-231 DOI: 10.1016/j.ccr.2009.01.027.
- 43 Siemann DW, Shi W. Efficacy of combined antiangiogenic and vascular disrupting agents in treatment of solid tumors. Int J Radiat Oncol Biol Phys 2004; 60: 1233-1240 DOI: 10.1016/j.ijrobp.2004.08.002.
- 44 Jahanban-Esfahlan R, Seidi K, Manjili MH. et al. Tumor cell dormancy: Threat or opportunity in the fight against cancer. Cancers (Basel) 2019; 11: 1207 DOI: 10.3390/cancers11081207.
- 45 Martin JD, Seano G, Jain RK. Normalizing function of tumor vessels: Progress, opportunities, and challenges. Annu Rev Physiol 2019; 81: 505-534 DOI: 10.1146/annurev-physiol-020518-114700.
- 46 Roskoski R. Vascular endothelial growth factor (VEGF) signaling in tumor progression. Crit Rev Oncol Hematol 2007; 62: 179-213 DOI: 10.1016/j.critrevonc.2007.01.006.
- 47 Fukumura D, Duda DG, Munn LL. et al. Tumor microvasculature and microenvironment: Novel insights through intravital imaging in pre-clinical models. Microcirculation 2010; 17: 206-225 DOI: 10.1111/j.1549-8719.2010.00029.x.
- 48 Ehling M, Mazzone M. Vessel normalization in the spot-LIGHT of cancer treatment. Trends Mol Med 2016; 22: 85-87 DOI: 10.1016/j.molmed.2015.12.009.
- 49 Jain RK. Antiangiogenesis strategies revisited: From starving tumors to alleviating hypoxia. Cancer Cell 2014; 26: 605-622 DOI: 10.1016/j.ccell.2014.10.006.
- 50 Jain RK, Martin JD, Stylianopoulos T. The role of mechanical forces in tumor growth and therapy. Annu Rev Biomed Eng 2014; 16: 321-346 DOI: 10.1146/annurev-bioeng-071813-105259.
- 51 Goel S, Wong AH, Jain RK. Vascular normalization as a therapeutic strategy for malignant and nonmalignant disease. Cold Spring Harb Perspect Med 2012; 2: a006486 DOI: 10.1101/cshperspect.a006486.
- 52 Leite de Oliveira R, Deschoemaeker S, Henze AT. et al. Gene-targeting of Phd2 improves tumor response to chemotherapy and prevents side-toxicity. Cancer Cell 2012; 22: 263-277 DOI: 10.1016/j.ccr.2012.06.028.
- 53 Li W, Quan YY, Li Y. et al. Monitoring of tumor vascular normalization: The key points from basic research to clinical application. Cancer Manag Res 2018; 10: 4163-4172 DOI: 10.2147/CMAR.S174712.
- 54 Goel S, Duda DG, Xu L. et al. Normalization of the vasculature for treatment of cancer and other diseases. Physiol Rev 2011; 91: 1071-1121 DOI: 10.1152/physrev.00038.2010.
- 55 Jain RK. Normalization of tumor vasculature: An emerging concept in antiangiogenic therapy. Science 2005; 307: 58-62 DOI: 10.1126/science.1104819.
- 56 Cantelmo AR, Pircher A, Kalucka J. et al. Vessel pruning or healing: Endothelial metabolism as a novel target?. Expert Opin Ther Targets 2017; 21: 239-247 DOI: 10.1080/14728222.2017.1282465.
- 57 Morrell MBG, Alvarez-Florez C, Zhang A. et al. Vascular modulation through exercise improves chemotherapy efficacy in Ewing sarcoma. Pediatr Blood Cancer 2019; 66: e27835 DOI: 10.1002/pbc.27835.
- 58 Betof AS, Lascola CD, Weitzel D. et al. Modulation of murine breast tumor vascularity, hypoxia and chemotherapeutic response by exercise. J Natl Cancer Inst 2015; 107 DOI: 10.1093/jnci/djv040.
- 59 McCullough DJ, Nguyen LM, Siemann DW. et al. Effects of exercise training on tumor hypoxia and vascular function in the rodent preclinical orthotopic prostate cancer model. J Appl Physiol (1985) 2013; 115: 1846-1854 DOI: 10.1152/japplphysiol.00949.2013.
- 60 McCullough DJ, Stabley JN, Siemann DW. et al. Modulation of blood flow, hypoxia, and vascular function in orthotopic prostate tumors during exercise. J Natl Cancer Inst 2014; 106: dju036 DOI: 10.1093/jnci/dju036.
- 61 Brown MD. Exercise and coronary vascular remodeling in the healthy heart. Exp Physiol 2003; 88: 645-658 DOI: 10.1113/eph8802618.
- 62 Yang HT, Ren J, Laughlin MH. et al. Prior exercise training produces NO-dependent increases in collateral blood flow after acute arterial occlusion. Am J Physiol Heart Circ Physiol 2002; 282: H301-H310 DOI: 10.1152/ajpheart.00160.2001.
- 63 Schirmer SH, Millenaar DN, Werner C. et al. Exercise promotes collateral artery growth mediated by monocytic nitric oxide. Arterioscler Thromb Vasc Biol 2015; 35: 1862-1871 DOI: 10.1161/ATVBAHA.115.305806.
- 64 Hellsten Y, Nyberg M, Jensen LG. et al. Vasodilator interactions in skeletal muscle blood flow regulation. J Physiol 2012; 590: 6297-6305 DOI: 10.1113/jphysiol.2012.240762.
- 65 Jones LW, Viglianti BL, Tashjian JA. et al. Effect of aerobic exercise on tumor physiology in an animal model of human breast cancer. J Appl Physiol (1985) 2010; 108: 343-348 DOI: 10.1152/japplphysiol.00424.2009.
- 66 Qiu Y, Myers DR, Lam WA. The biophysics and mechanics of blood from a materials perspective. Nat Rev Mater 2019; 4: 294-311 DOI: 10.1038/s41578-019-0099-y.
- 67 Atkinson CL, Carter HH, Naylor LH. et al. Opposing effects of shear-mediated dilation and myogenic constriction on artery diameter in response to handgrip exercise in humans. J Appl Physiol (1985) 2015; 119: 858-864 DOI: 10.1152/japplphysiol.01086.2014.
- 68 Kojda G, Hambrecht R. Molecular mechanisms of vascular adaptations to exercise. Physical activity as an effective antioxidant therapy?. Cardiovasc Res 2005; 67: 187-197 DOI: 10.1016/j.cardiores.2005.04.032.
- 69 Tzima E, Irani-Tehrani M, Kiosses WB. et al. A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. Nature 2005; 437: 426-431 DOI: 10.1038/nature03952.
- 70 Ballermann BJ, Ott MJ. Adhesion and differentiation of endothelial cells by exposure to chronic shear stress: a vascular graft model. Blood Purif 1995; 13: 125-134 DOI: 10.1159/000170195.
- 71 Green DJ, Hopman MT, Padilla J. et al. Vascular adaptation to exercise in humans: Role of hemodynamic stimuli. Physiol Rev 2017; 97: 495-528 DOI: 10.1152/physrev.00014.2016.
- 72 Chang YS, di Tomaso E, McDonald DM. et al. Mosaic blood vessels in tumors: frequency of cancer cells in contact with flowing blood. Proc Natl Acad Sci USA 2000; 97: 14608-14613 DOI: 10.1073/pnas.97.26.14608.
- 73 Goetz JG. Metastases go with the flow. Science 2018; 362: 999-1000 DOI: 10.1126/science.aat9100.
- 74 Jain RK. Determinants of tumor blood flow: A review. Cancer Res 1988; 48: 2641-2658
- 75 Hashizume H, Baluk P, Morikawa S. et al. Openings between defective endothelial cells explain tumor vessel leakiness. Am J Pathol 2000; 156: 1363-1380 DOI: 10.1016/S0002-9440(10)65006-7.
- 76 Hobbs SK, Monsky WL, Yuan F. et al. Regulation of transport pathways in tumor vessels: Role of tumor type and microenvironment. Proc Natl Acad Sci USA 1998; 95: 4607-4612 DOI: 10.1073/pnas.95.8.4607.
- 77 Yuan F, Salehi HA, Boucher Y. et al. Vascular permeability and microcirculation of gliomas and mammary carcinomas transplanted in rat and mouse cranial windows. Cancer Res 1994; 54: 4564-4568
- 78 Potenta S, Zeisberg E, Kalluri R. The role of endothelial-to-mesenchymal transition in cancer progression. Br J Cancer 2008; 99: 1375-1379 DOI: 10.1038/sj.bjc.6604662.
- 79 Baluk P, Hashizume H, McDonald DM. Cellular abnormalities of blood vessels as targets in cancer. Curr Opin Genet Dev 2005; 15: 102-111 DOI: 10.1016/j.gde.2004.12.005.
- 80 Ozawa MG, Yao VJ, Chanthery YH. et al. Angiogenesis with pericyte abnormalities in a transgenic model of prostate carcinoma. Cancer 2005; 104: 2104-2115 DOI: 10.1002/cncr.21436.
- 81 Baluk P, Morikawa S, Haskell A. et al. Abnormalities of basement membrane on blood vessels and endothelial sprouts in tumors. Am J Pathol 2003; 163: 1801-1815 DOI: 10.1016/S0002-9440(10)63540-7.
- 82 Jung B, Obinata H, Galvani S. et al. Flow-regulated endothelial S1P receptor-1 signaling sustains vascular development. Dev Cell 2012; 23: 600-610 DOI: 10.1016/j.devcel.2012.07.015.
- 83 Hughes SK, Wacker BK, Kaneda MM. et al. Fluid shear stress modulates cell migration induced by sphingosine 1-phosphate and vascular endothelial growth factor. Ann Biomed Eng 2005; 33: 1003-1014 DOI: 10.1007/s10439-005-5756-1.
- 84 Zhao J, Garcia D, Gartung A. et al. Sphingosine-1-phosphate receptor subtype 2 signaling in endothelial senescence-associated functional impairments and inflammation. Curr Atheroscler Rep 2015; 17: 504 DOI: 10.1007/s11883-015-0504-y.
- 85 Cattoretti G, Mandelbaum J, Lee N. et al. Targeted disruption of the S1P2 sphingosine 1-phosphate receptor gene leads to diffuse large B-cell lymphoma formation. Cancer Res 2009; 69: 8686-8692 DOI: 10.1158/0008-5472.CAN-09-1110.
- 86 Carmeliet P, Jain RK. Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nat Rev Drug Discov 2011; 10: 417-427 DOI: 10.1038/nrd3455.
- 87 Jaszai J, Schmidt MHH. Trends and challenges in tumor anti-angiogenic therapies. Cells 2019; 8: 1102 doi:10.3390/cells8091102
- 88 Dellian M, Witwer BP, Salehi HA. et al. Quantitation and physiological characterization of angiogenic vessels in mice: Effect of basic fibroblast growth factor, vascular endothelial growth factor/vascular permeability factor, and host microenvironment. Am J Pathol 1996; 149: 59-71
- 89 Zhou Y, Wang W, Wei R. et al. Serum bradykinin levels as a diagnostic marker in cervical cancer with a potential mechanism to promote VEGF expression via BDKRB2. Int J Oncol 2019; 55: 131-141 DOI: 10.3892/ijo.2019.4792.
- 90 Stylianopoulos T, Munn LL, Jain RK. Reengineering the physical microenvironment of tumors to improve drug delivery and efficacy: From mathematical modeling to bench to bedside. Trends Cancer 2018; 4: 292-319 DOI: 10.1016/j.trecan.2018.02.005.
- 91 Tredan O, Galmarini CM, Patel K. et al. Drug resistance and the solid tumor microenvironment. J Natl Cancer Inst 2007; 99: 1441-1454 DOI: 10.1093/jnci/djm135.
- 92 Boucher Y, Jain RK. Microvascular pressure is the principal driving force for interstitial hypertension in solid tumors: Implications for vascular collapse. Cancer Res 1992; 52: 5110-5114
- 93 Gao Y, Shi Y, Fu M. et al. Simulation study of the effects of interstitial fluid pressure and blood flow velocity on transvascular transport of nanoparticles in tumor microenvironment. Comput Methods Programs Biomed 2020; 193: 105493 DOI: 10.1016/j.cmpb.2020.105493.
- 94 Jang SH, Wientjes MG, Lu D. et al. Drug delivery and transport to solid tumors. Pharm Res 2003; 20: 1337-1350 DOI: 10.1023/a:1025785505977.
- 95 Graham K, Unger E. Overcoming tumor hypoxia as a barrier to radiotherapy, chemotherapy and immunotherapy in cancer treatment. Int J Nanomedicine 2018; 13: 6049-6058 DOI: 10.2147/IJN.S140462.
- 96 Jain RK, Stylianopoulos T. Delivering nanomedicine to solid tumors. Nat Rev Clin Oncol 2010; 7: 653-664 DOI: 10.1038/nrclinonc.2010.139.
- 97 Vaupel P, Kallinowski F, Okunieff P. Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: A review. Cancer Res 1989; 49: 6449-6465
- 98 Hori K, Suzuki M, Tanda S. et al. In vivo analysis of tumor vascularization in the rat. Jpn J Cancer Res 1990; 81: 279-288 DOI: 10.1111/j.1349-7006.1990.tb02562.x.
- 99 Hori K, Suzuki M, Tanda S. et al. Characterization of heterogeneous distribution of tumor blood flow in the rat. Jpn J Cancer Res 1991; 82: 109-117 DOI: 10.1111/j.1349-7006.1991.tb01753.x.
- 100 Forster JC, Harriss-Phillips WM, Douglass MJ. et al. A review of the development of tumor vasculature and its effects on the tumor microenvironment. Hypoxia (Auckl) 2017; 5: 21-32 DOI: 10.2147/HP.S133231.
- 101 Petrova V, Annicchiarico-Petruzzelli M, Melino G. et al. The hypoxic tumour microenvironment. Oncogenesis 2018; 7: 10 DOI: 10.1038/s41389-017-0011-9.
- 102 Jing X, Yang F, Shao C. et al. Role of hypoxia in cancer therapy by regulating the tumor microenvironment. Mol Cancer 2019; 18: 157 DOI: 10.1186/s12943-019-1089-9.
- 103 Hellsten Y, Nyberg M. Cardiovascular adaptations to exercise training. Compr Physiol 2015; 6: 1-32 DOI: 10.1002/cphy.c140080.
- 104 Sarelius I, Pohl U. Control of muscle blood flow during exercise: local factors and integrative mechanisms. Acta Physiol (Oxf) 2010; 199: 349-365 DOI: 10.1111/j.1748-1716.2010.02129.x.
- 105 Bagher P, Segal SS. Regulation of blood flow in the microcirculation: role of conducted vasodilation. Acta Physiol (Oxf) 2011; 202: 271-284 DOI: 10.1111/j.1748-1716.2010.02244.x.
- 106 Cohen KD, Berg BR, Sarelius IH. Remote arteriolar dilations in response to muscle contraction under capillaries. Am J Physiol Heart Circ Physiol 2000; 278: H1916-H1923 DOI: 10.1152/ajpheart.2000.278.6.H1916.
- 107 Garcia E, Becker VG, McCullough DJ. et al. Blood flow responses to mild-intensity exercise in ectopic vs. orthotopic prostate tumors; Dependence upon host tissue hemodynamics and vascular reactivity. J Appl Physiol (1985) 2016; 121: 15-24 DOI: 10.1152/japplphysiol.00266.2016.
- 108 Rowell LB. Human cardiovascular adjustments to exercise and thermal stress. Physiol Rev 1974; 54: 75-159 DOI: 10.1152/physrev.1974.54.1.75.
- 109 Mishra RC, Rahman MM, Davis MJ. et al. Alpha1 -adrenergic stimulation selectively enhances endothelium-mediated vasodilation in rat cremaster arteries. Physiol Rep 2018; 6: e13703 DOI: 10.14814/phy2.13703.
- 110 Matsukawa K. Central command: control of cardiac sympathetic and vagal efferent nerve activity and the arterial baroreflex during spontaneous motor behaviour in animals. Exp Physiol 2012; 97: 20-28 DOI: 10.1113/expphysiol.2011.057661.
- 111 White DW, Raven PB. Autonomic neural control of heart rate during dynamic exercise: Revisited. J Physiol 2014; 592: 2491-2500 DOI: 10.1113/jphysiol.2014.271858.
- 112 Tschakovsky ME, Sujirattanawimol K, Ruble SB. et al. Is sympathetic neural vasoconstriction blunted in the vascular bed of exercising human muscle?. J Physiol 2002; 541: 623-635 DOI: 10.1113/jphysiol.2001.014431.
- 113 Mortensen SP, Nyberg M, Gliemann L. et al. Exercise training modulates functional sympatholysis and alpha-adrenergic vasoconstrictor responsiveness in hypertensive and normotensive individuals. J Physiol 2014; 592: 3063-3073 DOI: 10.1113/jphysiol.2014.273722.
- 114 Heinonen I, Wendelin-Saarenhovi M, Kaskinoro K. et al. Inhibition of alpha-adrenergic tone disturbs the distribution of blood flow in the exercising human limb. Am J Physiol Heart Circ Physiol 2013; 305: H163-H172 DOI: 10.1152/ajpheart.00925.2012.
- 115 McGee MC, Hamner JB, Williams RF. et al. Improved intratumoral oxygenation through vascular normalization increases glioma sensitivity to ionizing radiation. Int J Radiat Oncol Biol Phys 2010; 76: 1537-1545 DOI: 10.1016/j.ijrobp.2009.12.010.
- 116 Missiaen R, Mazzone M, Bergers G. The reciprocal function and regulation of tumor vessels and immune cells offers new therapeutic opportunities in cancer. Semin Cancer Biol 2018; 52: 107-116 DOI: 10.1016/j.semcancer.2018.06.002.
- 117 Martin JD, Fukumura D, Duda DG. et al. Reengineering the tumor microenvironment to alleviate hypoxia and overcome cancer heterogeneity. Cold Spring Harb Perspect Med 2016; 6: a027094 DOI: 10.1101/cshperspect.a027094.
- 118 Seynhaeve ALB, Amin M, Haemmerich D. et al. Hyperthermia and smart drug delivery systems for solid tumor therapy. Adv Drug Deliv Rev 2020; DOI: 10.1016/j.addr.2020.02.004.
- 119 Nacev A, Kim SH, Rodriguez-Canales J. et al. A dynamic magnetic shift method to increase nanoparticle concentration in cancer metastases: A feasibility study using simulations on autopsy specimens. Int J Nanomedicine 2011; 6: 2907-2923 DOI: 10.2147/IJN.S23724.
- 120 Dewhirst MW, Secomb TW. Transport of drugs from blood vessels to tumour tissue. Nat Rev Cancer 2017; 17: 738-750 DOI: 10.1038/nrc.2017.93.
- 121 Aukland K, Reed RK. Interstitial-lymphatic mechanisms in the control of extracellular fluid volume. Physiol Rev 1993; 73: 1-78 DOI: 10.1152/physrev.1993.73.1.1.
- 122 Jacob M, Chappell D, Becker BF. Regulation of blood flow and volume exchange across the microcirculation. Crit Care 2016; 20: 319 DOI: 10.1186/s13054-016-1485-0.
- 123 Heldin CH, Rubin K, Pietras K. et al. High interstitial fluid pressure – an obstacle in cancer therapy. Nat Rev Cancer 2004; 4: 806-813 DOI: 10.1038/nrc1456.
- 124 Carraway RE, Cochrane DE. Enhanced vascular permeability is hypothesized to promote inflammation-induced carcinogenesis and tumor development via extravasation of large molecular proteins into the tissue. Med Hypotheses 2012; 78: 738-743 DOI: 10.1016/j.mehy.2012.02.021.
- 125 Horsman MR, Vaupel P. Pathophysiological basis for the formation of the tumor microenvironment. Front Oncol 2016; 6: 66 DOI: 10.3389/fonc.2016.00066.
- 126 Garnier L, Gkountidi AO, Hugues S. Tumor-associated lymphatic vessel features and immunomodulatory functions. Front Immunol 2019; 10: 720 DOI: 10.3389/fimmu.2019.00720.
- 127 Simonsen TG, Gaustad JV, Leinaas MN. et al. High interstitial fluid pressure is associated with tumor-line specific vascular abnormalities in human melanoma xenografts. PLoS One 2012; 7: e40006 DOI: 10.1371/journal.pone.0040006.
- 128 Munson JM, Shieh AC. Interstitial fluid flow in cancer: Implications for disease progression and treatment. Cancer Manag Res 2014; 6: 317-328 DOI: 10.2147/CMAR.S65444.
- 129 Wagner M, Wiig H. Tumor interstitial fluid formation, characterization, and clinical implications. Front Oncol 2015; 5: 115 DOI: 10.3389/fonc.2015.00115.
- 130 Boucher Y, Baxter LT, Jain RK. Interstitial pressure gradients in tissue-isolated and subcutaneous tumors: Implications for therapy. Cancer Res 1990; 50: 4478-4484
- 131 Padera TP, Stoll BR, Tooredman JB. et al. Pathology: cancer cells compress intratumour vessels. Nature 2004; 427: 695 DOI: 10.1038/427695a.
- 132 Prabhakar U, Maeda H, Jain RK. et al. Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology. Cancer Res 2013; 73: 2412-2417 DOI: 10.1158/0008-5472.CAN-12-4561.
- 133 Padera TP, Kadambi A, di Tomaso E. et al. Lymphatic metastasis in the absence of functional intratumor lymphatics. Science 2002; 296: 1883-1886 DOI: 10.1126/science.1071420.
- 134 Wei R, Liu S, Zhang S. et al. Cellular and extracellular components in tumor microenvironment and their application in early diagnosis of cancers. Anal Cell Pathol (Amst) 2020; 2020: 6283796 DOI: 10.1155/2020/6283796.
- 135 Shang M, Soon RH, Lim CT. et al. Microfluidic modelling of the tumor microenvironment for anti-cancer drug development. Lab Chip 2019; 19: 369-386 DOI: 10.1039/c8lc00970h.
- 136 Mori T, Koga T, Shibata H. et al. Interstitial fluid pressure correlates clinicopathological factors of lung cancer. Ann Thorac Cardiovasc Surg 2015; 21: 201-208 DOI: 10.5761/atcs.oa.14-00208.
- 137 Milosevic M, Fyles A, Hedley D. et al. Interstitial fluid pressure predicts survival in patients with cervix cancer independent of clinical prognostic factors and tumor oxygen measurements. Cancer Res 2001; 61: 6400-6405
- 138 van der Voort van Zyp J, Thamilselvan V, Walsh M. et al. Extracellular pressure stimulates colon cancer cell adhesion in vitro and to surgical wounds by Src (sarcoma protein) activation. Am J Surg 2004; 188: 467-473 DOI: 10.1016/j.amjsurg.2004.07.005.
- 139 Rofstad EK, Galappathi K, Mathiesen BS. Tumor interstitial fluid pressure–a link between tumor hypoxia, microvascular density, and lymph node metastasis. Neoplasia 2014; 16: 586-594 DOI: 10.1016/j.neo.2014.07.003.
- 140 Jain RK, Tong RT, Munn LL. Effect of vascular normalization by antiangiogenic therapy on interstitial hypertension, peritumor edema, and lymphatic metastasis: Insights from a mathematical model. Cancer Res 2007; 67: 2729-2735 DOI: 10.1158/0008-5472.CAN-06-4102.
- 141 Gillen CM, Lee R, Mack GW. et al. Plasma volume expansion in humans after a single intense exercise protocol. J Appl Physiol (1985) 1991; 71: 1914-1920 DOI: 10.1152/jappl.1991.71.5.1914.
- 142 Gillen CM, Nishiyasu T, Langhans G. et al. Cardiovascular and renal function during exercise-induced blood volume expansion in men. J Appl Physiol (1985) 1994; 76: 2602-2610 DOI: 10.1152/jappl.1994.76.6.2602.
- 143 Nagashima K, Cline GW, Mack GW. et al. Intense exercise stimulates albumin synthesis in the upright posture. J Appl Physiol (1985) 2000; 88: 41-46 DOI: 10.1152/jappl.2000.88.1.41.
- 144 Mack GW, Yang R, Hargens AR. et al. Influence of hydrostatic pressure gradients on regulation of plasma volume after exercise. J Appl Physiol (1985) 1998; 85: 667-675 DOI: 10.1152/jappl.1998.85.2.667.
- 145 Haskell A, Nadel ER, Stachenfeld NS. et al. Transcapillary escape rate of albumin in humans during exercise-induced hypervolemia. J Appl Physiol (1985) 1997; 83: 407-413 DOI: 10.1152/jappl.1997.83.2.407.
- 146 Zawieja DC. Contractile physiology of lymphatics. Lymphat Res Biol 2009; 7: 87-96 DOI: 10.1089/lrb.2009.0007.
- 147 Reed RK, Rubin K. Transcapillary exchange: role and importance of the interstitial fluid pressure and the extracellular matrix. Cardiovasc Res 2010; 87: 211-217 DOI: 10.1093/cvr/cvq143.
- 148 Denekamp J, Hobson B. Endothelial-cell proliferation in experimental tumors. Br J Cancer 1982; 46: 711-720 DOI: 10.1038/bjc.1982.263.
- 149 Vaupel P, Hockel M. Blood supply, oxygenation status and metabolic micromilieu of breast cancers: characterization and therapeutic relevance. Int J Oncol 2000; 17: 869-879 DOI: 10.3892/ijo.17.5.869.
- 150 Helmlinger G, Yuan F, Dellian M. et al. Interstitial pH and pO2 gradients in solid tumors in vivo: High-resolution measurements reveal a lack of correlation. Nat Med 1997; 3: 177-182 DOI: 10.1038/nm0297-177.
- 151 Bertout JA, Patel SA, Simon MC. The impact of O2 availability on human cancer. Nat Rev Cancer 2008; 8: 967-975 DOI: 10.1038/nrc2540.
- 152 Bayer C, Shi K, Astner ST. et al. Acute versus chronic hypoxia: why a simplified classification is simply not enough. Int J Radiat Oncol Biol Phys 2011; 80: 965-968 DOI: 10.1016/j.ijrobp.2011.02.049.
- 153 Hockel M, Vaupel P. Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J Natl Cancer Inst 2001; 93: 266-276 DOI: 10.1093/jnci/93.4.266.
- 154 Kolstad P. Intercapillary distance, oxygen tension and local recurrence in cervix cancer. Scand J Clin Lab Invest Suppl 1968; 106: 145-157
- 155 Vaupel P, Mayer A, Hockel M. Tumor hypoxia and malignant progression. Methods Enzymol 2004; 381: 335-354 DOI: 10.1016/S0076-6879(04)81023-1.
- 156 Kaelin WG. The VHL tumor suppressor gene: Insights into oxygen sensing and cancer. Trans Am Clin Climatol Assoc 2017; 128: 298-307
- 157 Nakayama K, Kataoka N. Regulation of gene expression under hypoxic conditions. Int J Mol Sci 2019; 20: 3278 doi:10.3390/ijms20133278
- 158 Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer 2003; 3: 721-732 DOI: 10.1038/nrc1187.
- 159 Wang Y, Wang H, Li J. et al. Direct visualization of the phenotype of hypoxic tumor cells at single cell resolution in vivo using a new hypoxia probe. Intravital 2016; 5: e1187803 DOI: 10.1080/21659087.2016.1187803.
- 160 Muz B, de la Puente P, Azab F. et al. The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia (Auckl) 2015; 3: 83-92 DOI: 10.2147/HP.S93413.
- 161 Semenza GL. Oxygen sensing, hypoxia-inducible factors, and disease pathophysiology. Annu Rev Pathol 2014; 9: 47-71 DOI: 10.1146/annurev-pathol-012513-104720.
- 162 Brizel DM, Scully SP, Harrelson JM. et al. Tumor oxygenation predicts for the likelihood of distant metastases in human soft tissue sarcoma. Cancer Res 1996; 56: 941-943
- 163 Hasan NM, Adams GE, Joiner MC. et al. Hypoxia facilitates tumour cell detachment by reducing expression of surface adhesion molecules and adhesion to extracellular matrices without loss of cell viability. Br J Cancer 1998; 77: 1799-1805 DOI: 10.1038/bjc.1998.299.
- 164 Young SD, Marshall RS, Hill RP. Hypoxia induces DNA overreplication and enhances metastatic potential of murine tumor cells. Proc Natl Acad Sci USA 1988; 85: 9533-9537 DOI: 10.1073/pnas.85.24.9533.
- 165 Dewhirst MW. A potential solution for eliminating hypoxia as a cause for radioresistance. Proc Natl Acad Sci USA 2018; 115: 10548-10550 DOI: 10.1073/pnas.1814212115.
- 166 Sharma A, Arambula JF, Koo S. et al. Hypoxia-targeted drug delivery. Chem Soc Rev 2019; 48: 771-813 DOI: 10.1039/c8cs00304a.
- 167 Yokoyama C, Sueyoshi Y, Ema M. et al. Induction of oxidative stress by anticancer drugs in the presence and absence of cells. Oncol Lett 2017; 14: 6066-6070 DOI: 10.3892/ol.2017.6931.
- 168 Kim SJ, Kim HS, Seo YR. Understanding of ROS-inducing strategy in anticancer therapy. Oxid Med Cell Longev 2019; 2019: 5381692 DOI: 10.1155/2019/5381692.
- 169 Wang H, Jiang H, Van De Gucht M. et al. Hypoxic Radioresistance: Can ROS be the key to overcome it?. Cancers (Basel) 2019; 11: 112 DOI: 10.3390/cancers11010112.
- 170 Wilson WR, Hay MP. Targeting hypoxia in cancer therapy. Nat Rev Cancer 2011; 11: 393-410 DOI: 10.1038/nrc3064.
- 171 Ferreira LF, Poole DC, Barstow TJ. Muscle blood flow-O2 uptake interaction and their relation to on-exercise dynamics of O2 exchange. Respir Physiol Neurobiol 2005; 147: 91-103 DOI: 10.1016/j.resp.2005.02.002.
- 172 Perko MJ, Nielsen HB, Skak C. et al. Mesenteric, coeliac and splanchnic blood flow in humans during exercise. J Physiol 1998; 513: 907-913 DOI: 10.1111/j.1469-7793.1998.907ba.x.
- 173 Endo MY, Suzuki R, Nagahata N. et al. Differential arterial blood flow response of splanchnic and renal organs during low-intensity cycling exercise in women. Am J Physiol Heart Circ Physiol 2008; 294: H2322-H2326 DOI: 10.1152/ajpheart.91491.2007.
- 174 Fry BC, Roy TK, Secomb TW. Capillary recruitment in a theoretical model for blood flow regulation in heterogeneous microvessel networks. Physiol Rep 2013; 1: e00050 DOI: 10.1002/phy2.50.
- 175 Radak Z, Zhao Z, Koltai E. et al. Oxygen consumption and usage during physical exercise: the balance between oxidative stress and ROS-dependent adaptive signaling. Antioxid Redox Signal 2013; 18: 1208-1246 DOI: 10.1089/ars.2011.4498.
- 176 Ortiz-Prado E, Dunn JF, Vasconez J. et al. Partial pressure of oxygen in the human body: a general review. Am J Blood Res 2019; 9: 1-14
- 177 Pittman RN. Oxygen transport in the microcirculation and its regulation. Microcirculation 2013; 20: 117-137 DOI: 10.1111/micc.12017.
- 178 Pittman RN. Oxygen supply to contracting skeletal muscle at the microcirculatory level: diffusion vs. convection. Acta Physiol Scand 2000; 168: 593-602 DOI: 10.1046/j.1365-201x.2000.00710.x.
- 179 Cardinale DA, Larsen FJ, Jensen-Urstad M. et al. Muscle mass and inspired oxygen influence oxygen extraction at maximal exercise: role of mitochondrial oxygen affinity. Acta Physiol (Oxf) 2019; 225: e13110 DOI: 10.1111/apha.13110.
- 180 Joyner MJ, Casey DP. Regulation of increased blood flow (hyperemia) to muscles during exercise: a hierarchy of competing physiological needs. Physiol Rev 2015; 95: 549-601 DOI: 10.1152/physrev.00035.2013.
- 181 Lindholm ME, Rundqvist H. Skeletal muscle hypoxia-inducible factor-1 and exercise. Exp Physiol 2016; 101: 28-32 DOI: 10.1113/EP085318.
- 182 Skattebo O, Capelli C, Rud B. et al. Increased oxygen extraction and mitochondrial protein expression after small muscle mass endurance training. Scand J Med Sci Sports 2020; 30: 1615-1631 DOI: 10.1111/sms.13707.
- 183 Rud B, Foss O, Krustrup P. et al. One-legged endurance training: leg blood flow and oxygen extraction during cycling exercise. Acta Physiol (Oxf) 2012; 205: 177-185 DOI: 10.1111/j.1748-1716.2011.02383.x.
- 184 Lundby C, Gassmann M, Pilegaard H. Regular endurance training reduces the exercise induced HIF-1alpha and HIF-2alpha mRNA expression in human skeletal muscle in normoxic conditions. Eur J Appl Physiol 2006; 96: 363-369 DOI: 10.1007/s00421-005-0085-5.
- 185 Lindholm ME, Fischer H, Poellinger L. et al. Negative regulation of HIF in skeletal muscle of elite endurance athletes: a tentative mechanism promoting oxidative metabolism. Am J Physiol Regul Integr Comp Physiol 2014; 307: R248-R255 DOI: 10.1152/ajpregu.00036.2013.
- 186 Gatenby RA, Gawlinski ET, Gmitro AF. et al. Acid-mediated tumor invasion: a multidisciplinary study. Cancer Res 2006; 66: 5216-5223 DOI: 10.1158/0008-5472.CAN-05-4193.
- 187 Gatenby RA, Gillies RJ. Why do cancers have high aerobic glycolysis?. Nat Rev Cancer 2004; 4: 891-899 DOI: 10.1038/nrc1478.
- 188 Kallinowski F, Vaupel P, Runkel S. et al. Glucose uptake, lactate release, ketone body turnover, metabolic micromilieu, and pH distributions in human breast cancer xenografts in nude rats. Cancer Res 1988; 48: 7264-7272
- 189 Luo Z, Loja MN, Farwell DG. et al. Widefield optical imaging of changes in uptake of glucose and tissue extracellular pH in head and neck cancer. Cancer Prev Res (Phila) 2014; 7: 1035-1044 DOI: 10.1158/1940-6207.CAPR-14-0097.
- 190 Loja MN, Luo Z, Greg Farwell D. et al. Optical molecular imaging detects changes in extracellular pH with the development of head and neck cancer. Int J Cancer 2013; 132: 1613-1623 DOI: 10.1002/ijc.27837.
- 191 Griffiths JR. Are cancer cells acidic?. Br J Cancer 1991; 64: 425-427 DOI: 10.1038/bjc.1991.326.
- 192 Avnet S, Chano T, Massa A. et al. Acid microenvironment promotes cell survival of human bone sarcoma through the activation of cIAP proteins and NF-kappaB pathway. Am J Cancer Res 2019; 9: 1127-1144
- 193 de la Cruz-Lopez KG, Castro-Munoz LJ, Reyes-Hernandez DO. et al. Lactate in the regulation of tumor microenvironment and therapeutic approaches. Front Oncol 2019; 9: 1143 DOI: 10.3389/fonc.2019.01143.
- 194 Gerweck LE. Tumor pH: implications for treatment and novel drug design. Semin Radiat Oncol 1998; 8: 176-182 DOI: 10.1016/s1053-4296(98)80043-x.
- 195 Kallinowski F, Runkel S, Fortmeyer HP. et al. L-glutamine: A major substrate for tumor cells in vivo?. J Cancer Res Clin Oncol 1987; 113: 209-215 DOI: 10.1007/BF00396375.
- 196 Longo DL, Bartoli A, Consolino L. et al. In vivo imaging of tumor metabolism and acidosis by combining PET and MRI-CEST pH imaging. Cancer Res 2016; 76: 6463-6470 DOI: 10.1158/0008-5472.CAN-16-0825.
- 197 Jiang B. Aerobic glycolysis and high level of lactate in cancer metabolism and microenvironment. Genes Dis 2017; 4: 25-27 DOI: 10.1016/j.gendis.2017.02.003.
- 198 Al Tameemi W, Dale TP, Al-Jumaily RMK. et al. Hypoxia-modified cancer cell metabolism. Front Cell Dev Biol 2019; 7: 4 DOI: 10.3389/fcell.2019.00004.
- 199 Gillies RJ, Gatenby RA. Metabolism and its sequelae in cancer evolution and therapy. Cancer J 2015; 21: 88-96 DOI: 10.1097/PPO.0000000000000102.
- 200 Fais S, Venturi G, Gatenby B. Microenvironmental acidosis in carcinogenesis and metastases: new strategies in prevention and therapy. Cancer Metastasis Rev 2014; 33: 1095-1108 DOI: 10.1007/s10555-014-9531-3.
- 201 Kato Y, Ozawa S, Miyamoto C. et al. Acidic extracellular microenvironment and cancer. Cancer Cell Int 2013; 13: 89 DOI: 10.1186/1475-2867-13-89.
- 202 Gerweck LE, Vijayappa S, Kozin S. Tumor pH controls the in vivo efficacy of weak acid and base chemotherapeutics. Mol Cancer Ther 2006; 5: 1275-1279 DOI: 10.1158/1535-7163.MCT-06-0024.
- 203 Faes S, Uldry E, Planche A. et al. Acidic pH reduces VEGF-mediated endothelial cell responses by downregulation of VEGFR-2; relevance for anti-angiogenic therapies. Oncotarget 2016; 7: 86026-86038 DOI: 10.18632/oncotarget.13323.
- 204 Kolosenko I, Avnet S, Baldini N. et al. Therapeutic implications of tumor interstitial acidification. Semin Cancer Biol 2017; 43: 119-133 DOI: 10.1016/j.semcancer.2017.01.008.
- 205 Aveseh M, Nikooie R, Aminaie M. Exercise-induced changes in tumour LDH-B and MCT1 expression are modulated by oestrogen-related receptor alpha in breast cancer-bearing BALB/c mice. J Physiol 2015; 593: 2635-2648 DOI: 10.1113/JP270463.
- 206 Bacurau RF, Belmonte MA, Seelaender MC. et al. Effect of a moderate intensity exercise training protocol on the metabolism of macrophages and lymphocytes of tumour-bearing rats. Cell Biochem Funct 2000; 18: 249-258 DOI: 10.1002/1099-0844(200012)18:4<249::AID-CBF879>3.0.CO;2-2.
- 207 Juel C. Regulation of pH in human skeletal muscle: adaptations to physical activity. Acta Physiol (Oxf) 2008; 193: 17-24 DOI: 10.1111/j.1748-1716.2008.01840.x.
- 208 Stickland MK, Lindinger MI, Olfert IM. et al. Pulmonary gas exchange and acid-base balance during exercise. Compr Physiol 2013; 3: 693-739 DOI: 10.1002/cphy.c110048.
- 209 Wasserman K, Cox TA, Sietsema KE. Ventilatory regulation of arterial H(+) (pH) during exercise. Respir Physiol Neurobiol 2014; 190: 142-148 DOI: 10.1016/j.resp.2013.10.009.
- 210 Pilegaard H, Domino K, Noland T. et al. Effect of high-intensity exercise training on lactate/H+ transport capacity in human skeletal muscle. Am J Physiol 1999; 276: E255-E261 DOI: 10.1152/ajpendo.1999.276.2.E255.
- 211 Juel C. Regulation of cellular pH in skeletal muscle fiber types, studied with sarcolemmal giant vesicles obtained from rat muscles. Biochim Biophys Acta 1995; 1265: 127-132 DOI: 10.1016/0167-4889(94)00209-w.
- 212 Juel C, Holten MK, Dela F. Effects of strength training on muscle lactate release and MCT1 and MCT4 content in healthy and type 2 diabetic humans. J Physiol 2004; 556: 297-304 DOI: 10.1113/jphysiol.2003.058222.
- 213 Pilegaard H, Bangsbo J, Richter EA. et al. Lactate transport studied in sarcolemmal giant vesicles from human muscle biopsies: relation to training status. J Appl Physiol (1985) 1994; 77: 1858-1862 DOI: 10.1152/jappl.1994.77.4.1858.
- 214 Thomas C, Bishop D, Moore-Morris T. et al. Effects of high-intensity training on MCT1, MCT4, and NBC expressions in rat skeletal muscles: influence of chronic metabolic alkalosis. Am J Physiol Endocrinol Metab 2007; 293: E916-E922 DOI: 10.1152/ajpendo.00164.2007.
- 215 Nielsen JJ, Mohr M, Klarskov C. et al. Effects of high-intensity intermittent training on potassium kinetics and performance in human skeletal muscle. J Physiol 2004; 554: 857-870 DOI: 10.1113/jphysiol.2003.050658.
- 216 Anderson KG, Stromnes IM, Greenberg PD. Obstacles posed by the tumor microenvironment to T cell activity: a case for synergistic therapies. Cancer Cell 2017; 31: 311-325 DOI: 10.1016/j.ccell.2017.02.008.
- 217 Park SL, Gebhardt T, Mackay LK. Tissue-resident memory T cells in cancer immunosurveillance. Trends Immunol 2019; 40: 735-747 DOI: 10.1016/j.it.2019.06.002.
- 218 Paardekooper LM, Vos W, van den Bogaart G. Oxygen in the tumor microenvironment: effects on dendritic cell function. Oncotarget 2019; 10: 883-896 DOI: 10.18632/oncotarget.26608.
- 219 Vito A, El-Sayes N, Mossman K. Hypoxia-driven immune escape in the tumor microenvironment. Cells 2020; 9: 992 DOI: 10.3390/cells9040992.
- 220 Huber V, Camisaschi C, Berzi A. et al. Cancer acidity: an ultimate frontier of tumor immune escape and a novel target of immunomodulation. Semin Cancer Biol 2017; 43: 74-89 DOI: 10.1016/j.semcancer.2017.03.001.
- 221 Gajewski TF, Fuertes M, Spaapen R. et al. Molecular profiling to identify relevant immune resistance mechanisms in the tumor microenvironment. Curr Opin Immunol 2011; 23: 286-292 DOI: 10.1016/j.coi.2010.11.013.
- 222 Davoodzadeh Gholami M, Kardar GA, Saeedi Y. et al. Exhaustion of T lymphocytes in the tumor microenvironment: significance and effective mechanisms. Cell Immunol 2017; 322: 1-14 DOI: 10.1016/j.cellimm.2017.10.002.
- 223 Krzywinska E, Stockmann C. Hypoxia, metabolism and immune cell function. Biomedicines 2018; 6: 56 DOI: 10.3390/biomedicines6020056.
- 224 Lin Y, Xu J, Lan H. Tumor-associated macrophages in tumor metastasis: biological roles and clinical therapeutic applications. J Hematol Oncol 2019; 12: 76 DOI: 10.1186/s13045-019-0760-3.
- 225 Labiano S, Palazon A, Melero I. Immune response regulation in the tumor microenvironment by hypoxia. Semin Oncol 2015; 42: 378-386 DOI: 10.1053/j.seminoncol.2015.02.009.
- 226 Kondoh M, Ohga N, Akiyama K. et al. Hypoxia-induced reactive oxygen species cause chromosomal abnormalities in endothelial cells in the tumor microenvironment. PLoS One 2013; 8: e80349 DOI: 10.1371/journal.pone.0080349.
- 227 Xu-Monette ZY, Zhang M, Li J. et al. PD-1/PD-L1 Blockade: Have we found the key to unleash the antitumor immune response?. Front Immunol 2017; 8: 1597 DOI: 10.3389/fimmu.2017.01597.
- 228 Song X, Zhang Y, Zhang L. et al. Hypoxia enhances indoleamine 2,3-dioxygenase production in dendritic cells. Oncotarget 2018; 9: 11572-11580 DOI: 10.18632/oncotarget.24098.
- 229 Prendergast GC, Smith C, Thomas S. et al. Indoleamine 2,3-dioxygenase pathways of pathogenic inflammation and immune escape in cancer. Cancer Immunol Immunother 2014; 63: 721-735 DOI: 10.1007/s00262-014-1549-4.
- 230 Kiraga L, Cheda L, Taciak B. et al. Changes in hypoxia level of CT26 tumors during various stages of development and comparing different methods of hypoxia determination. PLoS One 2018; 13: e0206706 DOI: 10.1371/journal.pone.0206706.
- 231 Conforti L. Potassium channels of T lymphocytes take center stage in the fight against cancer. J Immunother Cancer 2017; 5: 2 DOI: 10.1186/s40425-016-0202-5.
- 232 Eil R, Vodnala SK, Clever D. et al. Ionic immune suppression within the tumour microenvironment limits T cell effector function. Nature 2016; 537: 539-543 DOI: 10.1038/nature19364.
- 233 Renner K, Singer K, Koehl GE. et al. Metabolic hallmarks of tumor and immune cells in the tumor microenvironment. Front Immunol 2017; 8: 248 DOI: 10.3389/fimmu.2017.00248.
- 234 Brand A, Singer K, Koehl GE. et al. LDHA-associated lactic acid production blunts tumor immunosurveillance by T and NK cells. Cell Metab 2016; 24: 657-671 DOI: 10.1016/j.cmet.2016.08.011.
- 235 Lardner A. The effects of extracellular pH on immune function. J Leukoc Biol 2001; 69: 522-530
- 236 Gkretsi V, Stylianou A, Papageorgis P. et al. Remodeling components of the tumor microenvironment to enhance cancer therapy. Front Oncol 2015; 5: 214 DOI: 10.3389/fonc.2015.00214.
- 237 Calcinotto A, Filipazzi P, Grioni M. et al. Modulation of microenvironment acidity reverses anergy in human and murine tumor-infiltrating T lymphocytes. Cancer Res 2012; 72: 2746-2756 DOI: 10.1158/0008-5472.CAN-11-1272.
- 238 Soriano C, Mukaro V, Hodge G. et al. Increased proteinase inhibitor-9 (PI-9) and reduced granzyme B in lung cancer: mechanism for immune evasion?. Lung Cancer 2012; 77: 38-45 DOI: 10.1016/j.lungcan.2012.01.017.
- 239 Gottfried E, Kunz-Schughart LA, Ebner S. et al. Tumor-derived lactic acid modulates dendritic cell activation and antigen expression. Blood 2006; 107: 2013-2021 DOI: 10.1182/blood-2005-05-1795.
- 240 Bellone M, Calcinotto A, Filipazzi P. et al. The acidity of the tumor microenvironment is a mechanism of immune escape that can be overcome by proton pump inhibitors. Oncoimmunology 2013; 2: e22058 DOI: 10.4161/onci.22058.
- 241 Caruana I, Simula L, Locatelli F. et al. T lymphocytes against solid malignancies: winning ways to defeat tumors. Cell Stress 2018; 2: 200-212 DOI: 10.15698/cst2018.07.148.
- 242 Hojman P, Gehl J, Christensen JF. et al. Molecular mechanisms linking exercise to cancer prevention and treatment. Cell Metab 2018; 27: 10-21 DOI: 10.1016/j.cmet.2017.09.015.
- 243 Nielsen HB, Secher NH, Kappel M. et al. Lymphocyte, NK and LAK cell responses to maximal exercise. Int J Sports Med 1996; 17: 60-65 DOI: 10.1055/s-2007-972809.
- 244 Walsh NP, Gleeson M, Pyne DB. et al. Position statement. Part two: Maintaining immune health. Exerc Immunol Rev 2011; 17: 64-103
- 245 Koelwyn GJ, Wennerberg E, Demaria S. et al. Exercise in regulation of inflammation-immune axis function in cancer initiation and progression. Oncology (Williston Park) 2015; 29: 908-920
- 246 Stromberg A, Rullman E, Jansson E. et al. Exercise-induced upregulation of endothelial adhesion molecules in human skeletal muscle and number of circulating cells with remodeling properties. J Appl Physiol (1985) 2017; 122: 1145-1154 DOI: 10.1152/japplphysiol.00956.2016.
- 247 Campbell JP, Riddell NE, Burns VE. et al. Acute exercise mobilises CD8+T lymphocytes exhibiting an effector-memory phenotype. Brain Behav Immun 2009; 23: 767-775 DOI: 10.1016/j.bbi.2009.02.011.
- 248 Bianco TM, Abdalla DR, Desiderio CS. et al. The influence of physical activity in the anti-tumor immune response in experimental breast tumor. Immunol Lett 2017; 190: 148-158 DOI: 10.1016/j.imlet.2017.08.007.
- 249 DeVito NC, Plebanek MP, Theivanthiran B. et al. Role of tumor-mediated dendritic cell tolerization in immune evasion. Front Immunol 2019; 10: 2876 DOI: 10.3389/fimmu.2019.02876.
- 250 Kim R, Emi M, Tanabe K. Cancer cell immune escape and tumor progression by exploitation of anti-inflammatory and pro-inflammatory responses. Cancer Biol Ther 2005; 4: 924-933 DOI: 10.4161/cbt.4.9.2101.
- 251 Kusmartsev S, Gabrilovich DI. Effect of tumor-derived cytokines and growth factors on differentiation and immune suppressive features of myeloid cells in cancer. Cancer Metastasis Rev 2006; 25: 323-331 DOI: 10.1007/s10555-006-9002-6.
- 252 Pedersen L, Idorn M, Olofsson GH. et al. Voluntary running suppresses tumor growth through epinephrine- and IL-6-dependent NK cell mobilization and redistribution. Cell Metab 2016; 23: 554-562 DOI: 10.1016/j.cmet.2016.01.011.
- 253 Ashcraft KA, Peace RM, Betof AS. et al. Efficacy and mechanisms of aerobic exercise on cancer initiation, progression, and metastasis: a critical systematic review of in vivo preclinical data. Cancer Res 2016; 76: 4032-4050 DOI: 10.1158/0008-5472.CAN-16-0887.
- 254 Abdalla DR, Murta EF, Michelin MA. The influence of physical activity on the profile of immune response cells and cytokine synthesis in mice with experimental breast tumors induced by 7,12-dimethylbenzanthracene. Eur J Cancer Prev 2013; 22: 251-258 DOI: 10.1097/CEJ.0b013e3283592cbb.
- 255 Qi L, Yu H, Zhang Y. et al. IL-10 secreted by M2 macrophage promoted tumorigenesis through interaction with JAK2 in glioma. Oncotarget 2016; 7: 71673-71685 DOI: 10.18632/oncotarget.12317.
- 256 Kwasniak K, Czarnik-Kwasniak J, Maziarz A. et al. Scientific reports concerning the impact of interleukin 4, interleukin 10 and transforming growth factor beta on cancer cells. Cent Eur J Immunol 2019; 44: 190-200 DOI: 10.5114/ceji.2018.76273.
- 257 Maynard CL, Weaver CT. Diversity in the contribution of interleukin-10 to T-cell-mediated immune regulation. Immunol Rev 2008; 226: 219-233 DOI: 10.1111/j.1600-065X.2008.00711.x.
- 258 Faustino-Rocha AI, Silva A, Gabriel J. et al. Long-term exercise training as a modulator of mammary cancer vascularization. Biomed Pharmacother 2016; 81: 273-280 DOI: 10.1016/j.biopha.2016.04.030.
- 259 Figueira ACC, Figueira MC, Silva C. et al. Exercise training-induced modulation in microenvironment of rat mammary neoplasms. Int J Sports Med 2018; 39: 885-892 DOI: 10.1055/a-0660-0198.
- 260 Pillon NJ, Bilan PJ, Fink LN. et al. Cross-talk between skeletal muscle and immune cells: muscle-derived mediators and metabolic implications. Am J Physiol Endocrinol Metab 2013; 304: E453-E465 DOI: 10.1152/ajpendo.00553.2012.
- 261 Yang W, Hu P. Skeletal muscle regeneration is modulated by inflammation. J Orthop Translat 2018; 13: 25-32 DOI: 10.1016/j.jot.2018.01.002.
- 262 Peake JM, Della Gatta P, Suzuki K. et al. Cytokine expression and secretion by skeletal muscle cells: regulatory mechanisms and exercise effects. Exerc Immunol Rev 2015; 21: 8-25
- 263 Hoffmann C, Weigert C. Skeletal muscle as an endocrine organ: the role of myokines in exercise adaptations. Cold Spring Harb Perspect Med 2017; 7: a029793 DOI: 10.1101/cshperspect.a029793.
- 264 Malm C, Sjodin TL, Sjoberg B. et al. Leukocytes, cytokines, growth factors and hormones in human skeletal muscle and blood after uphill or downhill running. J Physiol 2004; 556: 983-1000 DOI: 10.1113/jphysiol.2003.056598.
- 265 Hyldahl RD, Xin L, Hubal MJ. et al. Activation of nuclear factor-kappaB following muscle eccentric contractions in humans is localized primarily to skeletal muscle-residing pericytes. FASEB J 2011; 25: 2956-2966 DOI: 10.1096/fj.10-177105.
- 266 Arnold L, Henry A, Poron F. et al. Inflammatory monocytes recruited after skeletal muscle injury switch into anti-inflammatory macrophages to support myogenesis. J Exp Med 2007; 204: 1057-1069 DOI: 10.1084/jem.20070075.
- 267 Ruffell D, Mourkioti F, Gambardella A. et al. A CREB-C/EBPbeta cascade induces M2 macrophage-specific gene expression and promotes muscle injury repair. Proc Natl Acad Sci USA 2009; 106: 17475-17480 DOI: 10.1073/pnas.0908641106.
- 268 Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol 2008; 8: 958-969 DOI: 10.1038/nri2448.
- 269 Chazaud B. Macrophages: supportive cells for tissue repair and regeneration. Immunobiology 2014; 219: 172-178 DOI: 10.1016/j.imbio.2013.09.001.
- 270 Villalta SA, Rosenthal W, Martinez L. et al. Regulatory T cells suppress muscle inflammation and injury in muscular dystrophy. Sci Transl Med 2014; 6: 258ra142 DOI: 10.1126/scitranslmed.3009925.
- 271 Trappe TA, Carroll CC, Dickinson JM. et al. Influence of acetaminophen and ibuprofen on skeletal muscle adaptations to resistance exercise in older adults. Am J Physiol Regul Integr Comp Physiol 2011; 300: R655-R662 DOI: 10.1152/ajpregu.00611.2010.
- 272 Zhang B, Hu Y, Pang Z. Modulating the tumor microenvironment to enhance tumor nanomedicine delivery. Front Pharmacol 2017; 8: 952 DOI: 10.3389/fphar.2017.00952.
- 273 De Bock K, Mazzone M, Carmeliet P. Antiangiogenic therapy, hypoxia, and metastasis: risky liaisons, or not?. Nat Rev Clin Oncol 2011; 8: 393-404 DOI: 10.1038/nrclinonc.2011.83.
- 274 Hvid T, Lindegaard B, Winding K. et al. Effect of a 2-year home-based endurance training intervention on physiological function and PSA doubling time in prostate cancer patients. Cancer Causes Control 2016; 27: 165-174 DOI: 10.1007/s10552-015-0694-1.
- 275 Idorn M, Hojman P. Exercise-dependent regulation of NK cells in cancer protection. Trends Mol Med 2016; 22: 565-577 DOI: 10.1016/j.molmed.2016.05.007.
- 276 Di Francescomarino S, Sciartilli A, Di Valerio V. et al. The effect of physical exercise on endothelial function. Sports Med 2009; 39: 797-812 DOI: 10.2165/11317750-000000000-00000.
- 277 Harriss DJ, MacSween A, Atkinson G. Ethical standards in sport and exercise science research: 2020 update. Int J Sports Med 2019; 40: 813-817 DOI: 10.1055/a-1015-3123.