Thromb Haemost 2021; 121(08): 1021-1030
DOI: 10.1055/a-1336-0526
Review Article

Polyanions in Coagulation and Thrombosis: Focus on Polyphosphate and Neutrophils Extracellular Traps

Chandini Rangaswamy*
1   Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
,
Hanna Englert*
1   Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
,
Carsten Deppermann
1   Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
,
Thomas Renné
1   Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
› Author Affiliations
Funding T.R. acknowledges the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) grants A11/SFB 877, B8/SFB 841, and P6/KFO 306.

Abstract

Neutrophil extracellular traps (NETs) and polyphosphates (polyP) have been recognized as procoagulant polyanions. This review summarizes the activities and regulation of the two procoagulant mediators and compares their functions. NETs are composed of DNA which like polyP is built of phosphate units linked by high-energy phosphoanhydride bonds. Both NETs and polyP form insoluble particulate surfaces composed of a DNA/histone meshwork or Ca2+-rich nanoparticles, respectively. These polyanionic molecules modulate coagulation involving an array of mechanisms and trigger thrombosis via activation of the factor XII-driven procoagulant and proinflammatory contact pathway. Here, we outline the current knowledge on NETs and polyP with respect to their procoagulant and prothrombotic nature, strategies for interference of their activities in circulation, as well as the crosstalk between these two molecules. A better understanding of the underlying, cellular mechanisms will shed light on the therapeutic potential of targeting NETs and polyP in coagulation and thrombosis.

Authors' Contributions

C.R., H.E., and T.R. wrote the manuscript. All authors edited the manuscript.


* These two authors contributed equally to this work.




Publication History

Received: 03 October 2020

Accepted: 04 December 2020

Accepted Manuscript online:
11 December 2020

Article published online:
16 February 2021

© 2020. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Sobczak AIS, Pitt SJ, Stewart AJ. Glycosaminoglycan neutralization in coagulation control. Arterioscler Thromb Vasc Biol 2018; 38 (06) 1258-1270
  • 2 Li W, Johnson DJ, Esmon CT, Huntington JA. Structure of the antithrombin-thrombin-heparin ternary complex reveals the antithrombotic mechanism of heparin. Nat Struct Mol Biol 2004; 11 (09) 857-862
  • 3 Mandel P, M’Etais P. Les acides nucléiques du plasma sanguin chez l’homme. C. R. Acad. Sci. Paris 1948; 142: 241-243
  • 4 Razavi P, Li BT, Brown DN. et al. High-intensity sequencing reveals the sources of plasma circulating cell-free DNA variants. Nat Med 2019; 25 (12) 1928-1937
  • 5 Whittle E, Leonard MO, Harrison R, Gant TW, Tonge DP. Multi-method characterization of the human circulating microbiome. Front Microbiol 2019; 9: 3266
  • 6 Davis Jr GL, Davis IV JS. Detection of circulating DNA by counterimmunoelectrophoresis (CIE). Arthritis Rheum 1973; 16 (01) 52-58
  • 7 Diehl F, Schmidt K, Choti MA. et al. Circulating mutant DNA to assess tumor dynamics. Nat Med 2008; 14 (09) 985-990
  • 8 Leon SA, Shapiro B, Sklaroff DM, Yaros MJ. Free DNA in the serum of cancer patients and the effect of therapy. Cancer Res 1977; 37 (03) 646-650
  • 9 Newman AM, Bratman SV, To J. et al. An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nat Med 2014; 20 (05) 548-554
  • 10 Steinman CR. Free DNA in serum and plasma from normal adults. J Clin Invest 1975; 56 (02) 512-515
  • 11 Saffarzadeh M, Cabrera-Fuentes HA, Veit F. et al. Characterization of rapid neutrophil extracellular trap formation and its cooperation with phagocytosis in human neutrophils. Discoveries (Craiova) 2014; 2 (02) e19
  • 12 Brinkmann V, Reichard U, Goosmann C. et al. Neutrophil extracellular traps kill bacteria. Science 2004; 303 (5663): 1532-1535
  • 13 Wang S, Xie T, Sun S. et al. DNase-1 treatment exerts protective effects in a rat model of intestinal ischemia-reperfusion injury. Sci Rep 2018; 8 (01) 17788
  • 14 Brinkmann V. Neutrophil extracellular traps in the second decade. J Innate Immun 2018; 10 (5–6): 414-421
  • 15 Castanheira FVS, Kubes P. Neutrophils and NETs in modulating acute and chronic inflammation. Blood 2019; 133 (20) 2178-2185
  • 16 Kaplan MJ, Radic M. Neutrophil extracellular traps: double-edged swords of innate immunity. J Immunol 2012; 189 (06) 2689-2695
  • 17 Fuchs TA, Abed U, Goosmann C. et al. Novel cell death program leads to neutrophil extracellular traps. J Cell Biol 2007; 176 (02) 231-241
  • 18 Li P, Li M, Lindberg MR, Kennett MJ, Xiong N, Wang Y. PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps. J Exp Med 2010; 207 (09) 1853-1862
  • 19 Papayannopoulos V, Metzler KD, Hakkim A, Zychlinsky A. Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. J Cell Biol 2010; 191 (03) 677-691
  • 20 Sollberger G, Choidas A, Burn GL. et al. Gasdermin D plays a vital role in the generation of neutrophil extracellular traps. Science Immunology 2018; 3 (26) eaar6689
  • 21 Brown MR, Kornberg A. Inorganic polyphosphate in the origin and survival of species. Proc Natl Acad Sci U S A 2004; 101 (46) 16085-16087
  • 22 Kornberg A. Inorganic polyphosphate: a molecule of many functions. Prog Mol Subcell Biol 1999; 23: 1-18
  • 23 Arelaki S, Arampatzioglou A, Kambas K, Sivridis E, Giatromanolaki A, Ritis K. Mast cells co-expressing CD68 and inorganic polyphosphate are linked with colorectal cancer. PLoS One 2018; 13 (03) e0193089
  • 24 Hernández-Ruiz L, Sáez-Benito A, Pujol-Moix N, Rodríguez-Martorell J, Ruiz FA. Platelet inorganic polyphosphate decreases in patients with delta storage pool disease. J Thromb Haemost 2009; 7 (02) 361-363
  • 25 Kulakovskaya EV, Zemskova MY, Kulakovskaya TV. Inorganic polyphosphate and cancer. Biochemistry (Mosc) 2018; 83 (08) 961-968
  • 26 Moreno-Sanchez D, Hernandez-Ruiz L, Ruiz FA, Docampo R. Polyphosphate is a novel pro-inflammatory regulator of mast cells and is located in acidocalcisomes. J Biol Chem 2012; 287 (34) 28435-28444
  • 27 Nickel KF, Labberton L, Long AT. et al. The polyphosphate/factor XII pathway in cancer-associated thrombosis: novel perspectives for safe anticoagulation in patients with malignancies. Thromb Res 2016; 141 (Suppl. 02) S4-S7
  • 28 Nickel KF, Ronquist G, Langer F. et al. The polyphosphate-factor XII pathway drives coagulation in prostate cancer-associated thrombosis. Blood 2015; 126 (11) 1379-1389
  • 29 Ruiz FA, Lea CR, Oldfield E, Docampo R. Human platelet dense granules contain polyphosphate and are similar to acidocalcisomes of bacteria and unicellular eukaryotes. J Biol Chem 2004; 279 (43) 44250-44257
  • 30 Morrissey JH. Polyphosphate: a link between platelets, coagulation and inflammation. Int J Hematol 2012; 95 (04) 346-352
  • 31 Müller F, Mutch NJ, Schenk WA. et al. Platelet polyphosphates are proinflammatory and procoagulant mediators in vivo. Cell 2009; 139 (06) 1143-1156
  • 32 Rendu F, Breton-Gorius J, Lebret M. et al. Evidence that abnormal platelet functions in human Chédiak-Higashi syndrome are the result of a lack of dense bodies. Am J Pathol 1983; 111 (03) 307-314
  • 33 Ghosh S, Shukla D, Suman K. et al. Inositol hexakisphosphate kinase 1 maintains hemostasis in mice by regulating platelet polyphosphate levels. Blood 2013; 122 (08) 1478-1486
  • 34 Mailer RK, Allende M, Heestermans M. et al. Xenotropic and polytropic retrovirus receptor 1 regulates procoagulant platelet polyphosphate. Blood 2020; 137 (10) 1392-1405
  • 35 Smith SA, Choi SH, Davis-Harrison R. et al. Polyphosphate exerts differential effects on blood clotting, depending on polymer size. Blood 2010; 116 (20) 4353-4359
  • 36 Momeni A, Filiaggi MJ. Comprehensive study of the chelation and coacervation of alkaline earth metals in the presence of sodium polyphosphate solution. Langmuir 2014; 30 (18) 5256-5266
  • 37 Donovan AJ, Kalkowski J, Smith SA, Morrissey JH, Liu Y. Size-controlled synthesis of granular polyphosphate nanoparticles at physiologic salt concentrations for blood clotting. Biomacromolecules 2014; 15 (11) 3976-3984
  • 38 Verhoef JJ, Barendrecht AD, Nickel KF. et al. Polyphosphate nanoparticles on the platelet surface trigger contact system activation. Blood 2017; 129 (12) 1707-1717
  • 39 Wijeyewickrema LC, Lameignere E, Hor L. et al. Polyphosphate is a novel cofactor for regulation of complement by a serpin, C1 inhibitor. Blood 2016; 128 (13) 1766-1776
  • 40 Labberton L, Long AT, Gendler SJ. et al. A flow cytometry-based assay for procoagulant platelet polyphosphate. Cytometry B Clin Cytom 2018; 94 (02) 369-373
  • 41 Castaldi PA, Larrieu MJ, Caen J. Availability of platelet factor 3 and activation of factor XII in thrombasthenia. Nature 1965; 207 (995) 422-424
  • 42 Johne J, Blume C, Benz PM. et al. Platelets promote coagulation factor XII-mediated proteolytic cascade systems in plasma. Biol Chem 2006; 387 (02) 173-178
  • 43 Szymusiak M, Donovan AJ, Smith SA. et al. Colloidal confinement of polyphosphate on gold nanoparticles robustly activates the contact pathway of blood coagulation. Bioconjug Chem 2016; 27 (01) 102-109
  • 44 Walsh PN, Griffin JH. Contributions of human platelets to the proteolytic activation of blood coagulation factors XII and XI. Blood 1981; 57 (01) 106-118
  • 45 Kleinschnitz C, Stoll G, Bendszus M. et al. Targeting coagulation factor XII provides protection from pathological thrombosis in cerebral ischemia without interfering with hemostasis. J Exp Med 2006; 203 (03) 513-518
  • 46 Renné T, Pozgajová M, Grüner S. et al. Defective thrombus formation in mice lacking coagulation factor XII. J Exp Med 2005; 202 (02) 271-281
  • 47 Döring Y, Libby P, Soehnlein O. Neutrophil extracellular traps participate in cardiovascular diseases: recent experimental and clinical insights. Circ Res 2020; 126 (09) 1228-1241
  • 48 Fuchs TA, Brill A, Duerschmied D. et al. Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci U S A 2010; 107 (36) 15880-15885
  • 49 Gould TJ, Vu TT, Swystun LL. et al. Neutrophil extracellular traps promote thrombin generation through platelet-dependent and platelet-independent mechanisms. Arterioscler Thromb Vasc Biol 2014; 34 (09) 1977-1984
  • 50 Kapoor S, Opneja A, Nayak L. The role of neutrophils in thrombosis. Thromb Res 2018; 170: 87-96
  • 51 Laridan E, Martinod K, De Meyer SF. Neutrophil extracellular traps in arterial and venous thrombosis. Semin Thromb Hemost 2019; 45 (01) 86-93
  • 52 Maas C, Renné T. Coagulation factor XII in thrombosis and inflammation. Blood 2018; 131 (17) 1903-1909
  • 53 Martinod K, Wagner DD. Thrombosis: tangled up in NETs. Blood 2014; 123 (18) 2768-2776
  • 54 Monroe DM. Polyphosphates rock! A role in thrombosis?. Blood 2015; 126 (12) 1403-1404
  • 55 Brill A, Fuchs TA, Savchenko AS. et al. Neutrophil extracellular traps promote deep vein thrombosis in mice. J Thromb Haemost 2012; 10 (01) 136-144
  • 56 de Boer OJ, Li X, Teeling P. et al. Neutrophils, neutrophil extracellular traps and interleukin-17 associate with the organisation of thrombi in acute myocardial infarction. Thromb Haemost 2013; 109 (02) 290-297
  • 57 Ducroux C, Desilles JP, Ho-Tin-Noe B. Response by Ducroux et al to letter regarding article, “Thrombus neutrophil extracellular traps content impair tPA-induced thrombolysis in acute ischemic stroke”. Stroke 2018; 49 (07) e266
  • 58 Farkas AZ, Farkas VJ, Gubucz I. et al. Neutrophil extracellular traps in thrombi retrieved during interventional treatment of ischemic arterial diseases. Thromb Res 2019; 175: 46-52
  • 59 Jiménez-Alcázar M, Rangaswamy C, Panda R. et al. Host DNases prevent vascular occlusion by neutrophil extracellular traps. Science 2017; 358 (6367): 1202-1206
  • 60 Kimball AS, Obi AT, Diaz JA, Henke PK. The emerging role of NETs in venous thrombosis and Immunothrombosis. Front Immunol 2016; 7: 236
  • 61 Oehmcke S, Mörgelin M, Herwald H. Activation of the human contact system on neutrophil extracellular traps. J Innate Immun 2009; 1 (03) 225-230
  • 62 von Brühl ML, Stark K, Steinhart A. et al. Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J Exp Med 2012; 209 (04) 819-835
  • 63 Healy LD, Puy C, Itakura A. et al. Colocalization of neutrophils, extracellular DNA and coagulation factors during NETosis: development and utility of an immunofluorescence-based microscopy platform. J Immunol Methods 2016; 435: 77-84
  • 64 McDonald B, Davis RP, Kim SJ. et al. Platelets and neutrophil extracellular traps collaborate to promote intravascular coagulation during sepsis in mice. Blood 2017; 129 (10) 1357-1367
  • 65 Noubouossie DF, Whelihan MF, Yu YB. et al. In vitro activation of coagulation by human neutrophil DNA and histone proteins but not neutrophil extracellular traps. Blood 2017; 129 (08) 1021-1029
  • 66 Kolaczkowska E, Jenne CN, Surewaard BG. et al. Molecular mechanisms of NET formation and degradation revealed by intravital imaging in the liver vasculature. Nat Commun 2015; 6: 6673
  • 67 Xu J, Zhang X, Pelayo R. et al. Extracellular histones are major mediators of death in sepsis. Nat Med 2009; 15 (11) 1318-1321
  • 68 Saffarzadeh M, Juenemann C, Queisser MA. et al. Neutrophil extracellular traps directly induce epithelial and endothelial cell death: a predominant role of histones. PLoS One 2012; 7 (02) e32366
  • 69 Lazzaretto B, Fadeel B. Intra- and extracellular degradation of neutrophil extracellular traps by macrophages and dendritic cells. J Immunol 2019; 203 (08) 2276-2290
  • 70 Farrera C, Fadeel B. Macrophage clearance of neutrophil extracellular traps is a silent process. J Immunol 2013; 191 (05) 2647-2656
  • 71 Zhang H, Ishige K, Kornberg A. A polyphosphate kinase (PPK2) widely conserved in bacteria. Proc Natl Acad Sci U S A 2002; 99 (26) 16678-16683
  • 72 Akiyama M, Crooke E, Kornberg A. An exopolyphosphatase of Escherichia coli. The enzyme and its ppx gene in a polyphosphate operon. J Biol Chem 1993; 268 (01) 633-639
  • 73 Wurst H, Kornberg A. A soluble exopolyphosphatase of Saccharomyces cerevisiae. Purification and characterization. J Biol Chem 1994; 269 (15) 10996-11001
  • 74 Sethuraman A, Rao NN, Kornberg A. The endopolyphosphatase gene: essential in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2001; 98 (15) 8542-8547
  • 75 Lonetti A, Szijgyarto Z, Bosch D, Loss O, Azevedo C, Saiardi A. Identification of an evolutionarily conserved family of inorganic polyphosphate endopolyphosphatases. J Biol Chem 2011; 286 (37) 31966-31974
  • 76 Lorenz B, Schröder HC. Mammalian intestinal alkaline phosphatase acts as highly active exopolyphosphatase. Biochim Biophys Acta 2001; 1547 (02) 254-261
  • 77 Seidlmayer LK, Blatter LA, Pavlov E, Dedkova EN. Inorganic polyphosphate--an unusual suspect of the mitochondrial permeability transition mystery. Channels (Austin) 2012; 6 (06) 463-467
  • 78 Kannemeier C, Shibamiya A, Nakazawa F. et al. Extracellular RNA constitutes a natural procoagulant cofactor in blood coagulation. Proc Natl Acad Sci U S A 2007; 104 (15) 6388-6393
  • 79 Labberton L, Kenne E, Long AT. et al. Neutralizing blood-borne polyphosphate in vivo provides safe thromboprotection. Nat Commun 2016; 7: 12616
  • 80 Mohanty T, Sørensen OE, Nordenfelt P. NETQUANT: automated quantification of neutrophil extracellular traps. Front Immunol 2018; 8: 1999
  • 81 Gavillet M, Martinod K, Renella R. et al. Flow cytometric assay for direct quantification of neutrophil extracellular traps in blood samples. Am J Hematol 2015; 90 (12) 1155-1158
  • 82 Kessenbrock K, Krumbholz M, Schönermarck U. et al. Netting neutrophils in autoimmune small-vessel vasculitis. Nat Med 2009; 15 (06) 623-625
  • 83 Yipp BG, Petri B, Salina D. et al. Infection-induced NETosis is a dynamic process involving neutrophil multitasking in vivo. Nat Med 2012; 18 (09) 1386-1393
  • 84 Christ JJ, Willbold S, Blank LM. Methods for the analysis of polyphosphate in the life sciences. Anal Chem 2020; 92 (06) 4167-4176
  • 85 Terashima M, Kamagata Y, Kato S. Rapid enrichment and isolation of polyphosphate-accumulating organisms through 4′6-diamidino-2-phenylindole (DAPI) staining with fluorescence-activated cell sorting (FACS). Front Microbiol 2020; 11: 793
  • 86 Seki Y, Nitta K, Kaneko Y. Observation of polyphosphate bodies and DNA during the cell division cycle of Synechococcus elongatus PCC 7942. Plant Biol (Stuttg) 2014; 16 (01) 258-263
  • 87 Günther S, Trutnau M, Kleinsteuber S. et al. Dynamics of polyphosphate-accumulating bacteria in wastewater treatment plant microbial communities detected via DAPI (4′,6′-diamidino-2-phenylindole) and tetracycline labeling. Appl Environ Microbiol 2009; 75 (07) 2111-2121
  • 88 Diaz JM, Ingall ED. Fluorometric quantification of natural inorganic polyphosphate. Environ Sci Technol 2010; 44 (12) 4665-4671
  • 89 Ohtomo R, Sekiguchi Y, Kojima T, Saito M. Different chain length specificity among three polyphosphate quantification methods. Anal Biochem 2008; 383 (02) 210-216
  • 90 Long AT, Kenne E, Jung R, Fuchs TA, Renné T. Contact system revisited: an interface between inflammation, coagulation, and innate immunity. J Thromb Haemost 2016; 14 (03) 427-437
  • 91 Bender L, Weidmann H, Rose-John S, Renné T, Long AT. Factor XII-driven inflammatory reactions with implications for anaphylaxis. Front Immunol 2017; 8: 1115
  • 92 Weidmann H, Heikaus L, Long AT, Naudin C, Schlüter H, Renné T. The plasma contact system, a protease cascade at the nexus of inflammation, coagulation and immunity. Biochim Biophys Acta Mol Cell Res 2017; 1864 (11, Pt B): 2118-2127
  • 93 Delabranche X, Helms J, Meziani F. Immunohaemostasis: a new view on haemostasis during sepsis. Ann Intensive Care 2017; 7 (01) 117
  • 94 Semeraro F, Ammollo CT, Morrissey JH. et al. Extracellular histones promote thrombin generation through platelet-dependent mechanisms: involvement of platelet TLR2 and TLR4. Blood 2011; 118 (07) 1952-1961
  • 95 Massberg S, Grahl L, von Bruehl ML. et al. Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases. Nat Med 2010; 16 (08) 887-896
  • 96 Kalathottukaren MT, Haynes CA, Kizhakkedathu JN. Approaches to prevent bleeding associated with anticoagulants: current status and recent developments. Drug Deliv Transl Res 2018; 8 (04) 928-944
  • 97 Folco EJ, Mawson TL, Vromman A. et al. Neutrophil extracellular traps induce endothelial cell activation and tissue factor production through interleukin-1α and cathepsin G. Arterioscler Thromb Vasc Biol 2018; 38 (08) 1901-1912
  • 98 Longstaff C, Varjú I, Sótonyi P. et al. Mechanical stability and fibrinolytic resistance of clots containing fibrin, DNA, and histones. J Biol Chem 2013; 288 (10) 6946-6956
  • 99 Varjú I, Longstaff C, Szabó L. et al. DNA, histones and neutrophil extracellular traps exert anti-fibrinolytic effects in a plasma environment. Thromb Haemost 2015; 113 (06) 1289-1298
  • 100 Stark K, Philippi V, Stockhausen S. et al. Disulfide HMGB1 derived from platelets coordinates venous thrombosis in mice. Blood 2016; 128 (20) 2435-2449
  • 101 Hamburger SA, McEver RP. GMP-140 mediates adhesion of stimulated platelets to neutrophils. Blood 1990; 75 (03) 550-554
  • 102 Moore KL, Patel KD, Bruehl RE. et al. P-selectin glycoprotein ligand-1 mediates rolling of human neutrophils on P-selectin. J Cell Biol 1995; 128 (04) 661-671
  • 103 Simon DI, Chen Z, Xu H. et al. Platelet glycoprotein ibalpha is a counterreceptor for the leukocyte integrin Mac-1 (CD11b/CD18). J Exp Med 2000; 192 (02) 193-204
  • 104 Chrysanthopoulou A, Kambas K, Stakos D. et al. Interferon lambda1/IL-29 and inorganic polyphosphate are novel regulators of neutrophil-driven thromboinflammation. J Pathol 2017; 243 (01) 111-122
  • 105 Carestia A, Kaufman T, Rivadeneyra L. et al. Mediators and molecular pathways involved in the regulation of neutrophil extracellular trap formation mediated by activated platelets. J Leukoc Biol 2016; 99 (01) 153-162
  • 106 Ducroux C, Di Meglio L, Loyau S. et al. Thrombus neutrophil extracellular traps content impair tPA-induced thrombolysis in acute ischemic stroke. Stroke 2018; 49 (03) 754-757
  • 107 Li M, Lin C, Deng H. et al. A novel peptidylarginine deiminase 4 (PAD4) inhibitor BMS-P5 blocks formation of neutrophil extracellular traps and delays progression of multiple myeloma. Mol Cancer Ther 2020; 19 (07) 1530-1538
  • 108 Jain S, Pitoc GA, Holl EK. et al. Nucleic acid scavengers inhibit thrombosis without increasing bleeding. Proc Natl Acad Sci U S A 2012; 109 (32) 12938-12943
  • 109 Renné T, Stavrou EX. Roles of factor XII in innate immunity. Front Immunol 2019; 10: 2011
  • 110 Smith SA, Choi SH, Collins JN, Travers RJ, Cooley BC, Morrissey JH. Inhibition of polyphosphate as a novel strategy for preventing thrombosis and inflammation. Blood 2012; 120 (26) 5103-5110
  • 111 Travers RJ, Shenoi RA, Kalathottukaren MT, Kizhakkedathu JN, Morrissey JH. Nontoxic polyphosphate inhibitors reduce thrombosis while sparing hemostasis. Blood 2014; 124 (22) 3183-3190
  • 112 Chen G, Zhang D, Fuchs TA, Manwani D, Wagner DD, Frenette PS. Heme-induced neutrophil extracellular traps contribute to the pathogenesis of sickle cell disease. Blood 2014; 123 (24) 3818-3827
  • 113 Clark SR, Ma AC, Tavener SA. et al. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat Med 2007; 13 (04) 463-469
  • 114 Hoppenbrouwers T, Autar ASA, Sultan AR. et al. In vitro induction of NETosis: comprehensive live imaging comparison and systematic review. PLoS One 2017; 12 (05) e0176472
  • 115 Nadesalingam A, Chen JHK, Farahvash A, Khan MA. Hypertonic saline suppresses NADPH oxidase-dependent neutrophil extracellular trap formation and promotes apoptosis. Front Immunol 2018; 9: 359
  • 116 Zhang H, Gómez-García MR, Shi X, Rao NN, Kornberg A. Polyphosphate kinase 1, a conserved bacterial enzyme, in a eukaryote, Dictyostelium discoideum, with a role in cytokinesis. Proc Natl Acad Sci U S A 2007; 104 (42) 16486-16491
  • 117 Hothorn M, Neumann H, Lenherr ED. et al. Catalytic core of a membrane-associated eukaryotic polyphosphate polymerase. Science 2009; 324 (5926): 513-516
  • 118 Ma AC, Kubes P. Platelets, neutrophils, and neutrophil extracellular traps (NETs) in sepsis. J Thromb Haemost 2008; 6 (03) 415-420
  • 119 Maugeri N, Campana L, Gavina M. et al. Activated platelets present high mobility group box 1 to neutrophils, inducing autophagy and promoting the extrusion of neutrophil extracellular traps. J Thromb Haemost 2014; 12 (12) 2074-2088
  • 120 Xu J, Zhang X, Monestier M, Esmon NL, Esmon CT. Extracellular histones are mediators of death through TLR2 and TLR4 in mouse fatal liver injury. J Immunol 2011; 187 (05) 2626-2631
  • 121 de Bont CM, Boelens WC, Pruijn GJM. NETosis, complement, and coagulation: a triangular relationship. Cell Mol Immunol 2019; 16 (01) 19-27
  • 122 Petersen LC, Bjørn SE, Nordfang O. Effect of leukocyte proteinases on tissue factor pathway inhibitor. Thromb Haemost 1992; 67 (05) 537-541
  • 123 Thammavongsa V, Kim HK, Missiakas D, Schneewind O. Staphylococcal manipulation of host immune responses. Nat Rev Microbiol 2015; 13 (09) 529-543
  • 124 Kambas K, Chrysanthopoulou A, Vassilopoulos D. et al. Tissue factor expression in neutrophil extracellular traps and neutrophil derived microparticles in antineutrophil cytoplasmic antibody associated vasculitis may promote thromboinflammation and the thrombophilic state associated with the disease. Ann Rheum Dis 2014; 73 (10) 1854-1863
  • 125 Stakos DA, Kambas K, Konstantinidis T. et al. Expression of functional tissue factor by neutrophil extracellular traps in culprit artery of acute myocardial infarction. Eur Heart J 2015; 36 (22) 1405-1414
  • 126 Grässle S, Huck V, Pappelbaum KI. et al. von Willebrand factor directly interacts with DNA from neutrophil extracellular traps. Arterioscler Thromb Vasc Biol 2014; 34 (07) 1382-1389
  • 127 Smith SA, Mutch NJ, Baskar D, Rohloff P, Docampo R, Morrissey JH. Polyphosphate modulates blood coagulation and fibrinolysis. Proc Natl Acad Sci U S A 2006; 103 (04) 903-908
  • 128 Choi SH, Smith SA, Morrissey JH. Polyphosphate accelerates factor V activation by factor XIa. Thromb Haemost 2015; 113 (03) 599-604
  • 129 Montilla M, Hernández-Ruiz L, García-Cozar FJ, Alvarez-Laderas I, Rodríguez-Martorell J, Ruiz FA. Polyphosphate binds to human von Willebrand factor in vivo and modulates its interaction with glycoprotein Ib. J Thromb Haemost 2012; 10 (11) 2315-2323
  • 130 Puy C, Tucker EI, Ivanov IS. et al. Platelet-derived short-chain polyphosphates enhance the inactivation of tissue factor pathway inhibitor by activated coagulation factor XI. PLoS One 2016; 11 (10) e0165172
  • 131 Mutch NJ, Engel R, Uitte de Willige S, Philippou H, Ariëns RA. Polyphosphate modifies the fibrin network and down-regulates fibrinolysis by attenuating binding of tPA and plasminogen to fibrin. Blood 2010; 115 (19) 3980-3988
  • 132 La CC, Takeuchi LE, Abbina S, Vappala S, Abbasi U, Kizhakkedathu JN. Targeting biological polyanions in blood: strategies toward the design of therapeutics. Biomacromolecules 2020; 21 (07) 2595-2621
  • 133 Yousefi S, Gold JA, Andina N. et al. Catapult-like release of mitochondrial DNA by eosinophils contributes to antibacterial defense. Nat Med 2008; 14 (09) 949-953
  • 134 von Köckritz-Blickwede M, Goldmann O, Thulin P. et al. Phagocytosis-independent antimicrobial activity of mast cells by means of extracellular trap formation. Blood 2008; 111 (06) 3070-3080
  • 135 Angelova PR, Iversen KZ, Teschemacher AG, Kasparov S, Gourine AV, Abramov AY. Signal transduction in astrocytes: Localization and release of inorganic polyphosphate. Glia 2018; 66 (10) 2126-2136
  • 136 Gerasimaitė R, Mayer A. Ppn2, a novel Zn2+-dependent polyphosphatase in the acidocalcisome-like yeast vacuole. J Cell Sci 2017; 130 (09) 1625-1636