Subscribe to RSS
DOI: 10.1055/a-1343-6541
Enantioselective Radical Functionalization of Imines and Iminium Intermediates via Visible-Light Photoredox Catalysis
Financial support from the National Natural Science Foundation of China (22001120 and 21732003) and the Natural Science Foundation of Jiangsu Province (BK20200297) is acknowledged.
Abstract
Visible-light photoredox catalysis has recently emerged as a powerful tool for the development of new and valuable chemical transformations under mild conditions. Visible-light promoted enantioselective radical transformations of imines and iminium intermediates provide new opportunities for the asymmetric synthesis of amines and the asymmetric β-functionalization of unsaturated carbonyl compounds. In this review, recent advances on the catalytic asymmetric radical functionalization of imines and iminium intermediates are summarized.
1 Introduction
2 Enantioselective Radical Functionalization of Imines
2.1 Asymmetric Reduction
2.2 Asymmetric Cyclization
2.3 Asymmetric Addition
2.4 Asymmetric Radical–Radical Coupling
3 Enantioselective Radical Functionalization of Iminium Ions
3.1 Asymmetric Radical Alkylation
3.2 Asymmetric Radical Acylation
4 Conclusion
Publication History
Received: 29 November 2020
Accepted after revision: 28 December 2020
Accepted Manuscript online:
28 December 2020
Article published online:
26 January 2021
© 2020. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Narayanam JM. R, Stephenson CR. J. Chem. Soc. Rev. 2011; 40: 102
- 1b Xuan J, Xiao W.-J. Angew. Chem. Int. Ed. 2012; 51: 6828
- 1c Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
- 1d Schultz DM, Yoon TP. Science 2014; 343: 1239176
- 1e Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
- 2a Zhang L, Meggers E. Acc. Chem. Res. 2017; 50: 320
- 2b Ma J, Zhang X, Huang X, Luo S, Meggers E. Nat. Protoc. 2018; 13: 605
- 2c Garrido-Castro AF, Maestro MC, Alemán J. Tetrahedron Lett. 2018; 59: 1286
-
2d
Silvi M,
Melchiorre P.
Nature 2018; 554: 41
- 2e Jiang C, Chen W, Zheng W.-H, Lu H. Org. Biomol. Chem. 2019; 17: 8673
- 2f Zhang H.-H, Chen H, Zhu C, Yu S. Sci. China Chem. 2020; 63: 637
- 2g Yin Y, Zhao X, Qiao B, Jiang Z. Org. Chem. Front. 2020; 7: 1283
- 2h Hong BC. Org. Biomol. Chem. 2020; 18: 4298
- 2i Saha D. Chem. Asian J. 2020; 15: 2129
- 3a Chiral Amine Synthesis: Methods, Developments and Applications. Nugent TC. Wiley-VCH; Weinheim: 2010
- 3b Kittakoop P, Mahidol C, Ruchirawat S. Curr. Top. Med. Chem. 2014; 14: 239
- 3c Froidevaux V, Negrell C, Caillol S, Pascault J.-P, Boutevin B. Chem. Rev. 2016; 116: 14181
- 4a Ferraris D. Tetrahedron 2007; 63: 9581
- 4b Yamada K, Tomioka K. Chem. Rev. 2008; 108: 2874
- 4c An G, Seifert C, Li G. Org. Biomol. Chem. 2015; 13: 1600
- 4d Trowbridge A, Walton SM, Gaunt MJ. Chem. Rev. 2020; 120: 2613
-
5a
Lelais G,
MacMillan DW. C.
Aldrichimica Acta 2006; 39: 79
- 5b Erkkilä A, Majander I, Pihko PM. Chem. Rev. 2007; 107: 5416
-
5c
MacMillan DW. C.
Nature 2008; 455: 304
- 5d Volla CM. R, Atodiresei I, Rueping M. Chem. Rev. 2014; 114: 2390
- 6a Leitch JA, Rossolini T, Rogova T, Maitland JA. P, Dixon DJ. ACS Catal. 2020; 10: 2009
- 6b Zou Y.-Q, Hörmann FM, Bach T. Chem. Soc. Rev. 2018; 47: 278
- 7 Lin L, Bai X, Ye X, Zhao X, Tan C.-H, Jiang Z. Angew. Chem. Int. Ed. 2017; 56: 13842
- 8 Knör G. Coord. Chem. Rev. 2016; 325: 102
- 9 Guo X, Okamoto Y, Schreier MR, Ward TR, Wenger OS. Chem. Sci. 2018; 9: 5052
- 10a Hammes-Schiffer S, Stuchebrukhov AA. Chem. Rev. 2010; 110: 6939
- 10b Weinberg DR, Gagliardi CJ, Hull JF, Murphy CF, Kent CA, Westlake BC, Paul A, Ess DH, McCafferty DG, Meyer TJ. Chem. Rev. 2012; 112: 4016
- 10c Gentry EC, Knowles RR. Acc. Chem. Res. 2016; 49: 1546
- 11 Rono LJ, Yayla HG, Wang DY, Armstrong MF, Knowles RR. J. Am. Chem. Soc. 2013; 135: 17735
- 12a Friestad GK. Tetrahedron 2001; 57: 5461
- 12b Miyabe H, Ueda M, Naito T. Synlett 2004; 1140
- 12c Renaud P, Giraud L. Synthesis 1996; 913
- 13 Friestad GK, Mathies AK. Tetrahedron 2007; 63: 2541
- 14 Friestad GK, Shen Y, Ruggles EL. Angew. Chem. Int. Ed. 2003; 42: 5061
- 15 Li Y, Zhou K, Wen Z, Cao S, Shen X, Lei M, Gong L. J. Am. Chem. Soc. 2018; 140: 15850
- 16 Han B, Li Y, Yu Y, Gong L. Nat. Commun. 2019; 10: 3804
- 17 Lee KN, Lei Z, Ngai M.-Y. J. Am. Chem. Soc. 2017; 139: 5003
- 18 Cao K, Tan SM, Lee R, Yang S, Jia H, Zhao X, Qiao B, Jiang Z. J. Am. Chem. Soc. 2019; 141: 5437
- 19 Hager D, MacMillan DW. C. J. Am. Chem. Soc. 2014; 136: 16986
- 20a Nakajima M, Fava E, Loescher S, Jiang Z, Rueping M. Angew. Chem. Int. Ed. 2015; 54: 8828
- 20b Fava E, Millet A, Nakajima M, Loescher S, Rueping M. Angew. Chem. Int. Ed. 2016; 55: 6776
- 21 Uraguchi D, Kinoshita N, Kizu T, Ooi T. J. Am. Chem. Soc. 2015; 137: 13768
- 22 Kizu T, Uraguchi D, Ooi T. J. Org. Chem. 2016; 81: 6953
-
23
Li Y,
Lei M,
Gong L.
Nat. Catal. 2019; 2: 1016
- 24 Wei Y, Zhou Q.-Q, Tan F, Lu L.-Q, Xiao W.-J. Synthesis 2019; 51: 3021
- 25 Yoon H.-S, Ho Z.-H, Jang J, Lee H.-J, Kim S.-J, Jang H.-Y. Org. Lett. 2012; 14: 3272
-
26
Murphy JJ,
Bastida D,
Paria S,
Fagnoni M,
Melchiorre P.
Nature 2016; 532: 218
- 27 Bahamonde A, Murphy JJ, Savarese M, Brémond É, Cavalli A, Melchiorre P. J. Am. Chem. Soc. 2017; 139: 4559
- 28 Silvi M, Verrier C, Rey YP, Buzzetti L, Melchiorre P. Nat. Chem. 2017; 9: 868
- 29 Mazzarella D, Crisenza GE. M, Melchiorre P. J. Am. Chem. Soc. 2018; 140: 8439
- 30 Verrier C, Alandini N, Pezzetta C, Moliterno M, Buzzetti L, Hepburn HB, Vega-Peñaloza A, Silvi M, Melchiorre P. ACS Catal. 2018; 8: 1062
- 31a Stavinoha J, Bay E, Leone A, Mariano PS. Tetrahedron Lett. 1980; 21: 3455
- 31b Mariano PS, Stavinoha J, Bay E. Tetrahedron 1981; 37: 3385
- 32 Woźniak Ł, Magagnano G, Melchiorre P. Angew. Chem. Int. Ed. 2018; 57: 1068
- 33 Bonilla P, Rey YP, Holden CM, Melchiorre P. Angew. Chem. Int. Ed. 2018; 57: 12819
- 34 Goti G, Bieszczad B, Vega-Peñaloza A, Melchiorre P. Angew. Chem. Int. Ed. 2019; 58: 1213
- 35 Morack T, Mück-Lichtenfeld C, Gilmour R. Angew. Chem. Int. Ed. 2019; 58: 1208
- 36 Zhao J.-J, Zhang H.-H, Shen X, Yu S. Org. Lett. 2019; 21: 913
For selected reviews on photoredox catalysis, see:
For selected reviews on enantioselective photoredox catalysis, see: