Synthesis 2021; 53(10): 1706-1718
DOI: 10.1055/a-1343-6541
short review

Enantioselective Radical Functionalization of Imines and Iminium Intermediates via Visible-Light Photoredox Catalysis

Jia-Jia Zhao
,
Hong-Hao Zhang
,
Shouyun Yu
Financial support from the National Natural Science Foundation of China (22001120 and 21732003) and the Natural Science Foundation of Jiangsu Province (BK20200297) is acknowledged.


Abstract

Visible-light photoredox catalysis has recently emerged as a powerful tool for the development of new and valuable chemical transformations under mild conditions. Visible-light promoted enantioselective radical transformations of imines and iminium intermediates provide new opportunities for the asymmetric synthesis of amines and the asymmetric β-functionalization of unsaturated carbonyl compounds. In this review, recent advances on the catalytic asymmetric radical functionalization of imines and iminium intermediates are summarized.

1 Introduction

2 Enantioselective Radical Functionalization of Imines

2.1 Asymmetric Reduction

2.2 Asymmetric Cyclization

2.3 Asymmetric Addition

2.4 Asymmetric Radical–Radical Coupling

3 Enantioselective Radical Functionalization of Iminium Ions

3.1 Asymmetric Radical Alkylation

3.2 Asymmetric Radical Acylation

4 Conclusion



Publication History

Received: 29 November 2020

Accepted after revision: 28 December 2020

Accepted Manuscript online:
28 December 2020

Article published online:
26 January 2021

© 2020. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References


    • For selected reviews on photoredox catalysis, see:
    • 1a Narayanam JM. R, Stephenson CR. J. Chem. Soc. Rev. 2011; 40: 102
    • 1b Xuan J, Xiao W.-J. Angew. Chem. Int. Ed. 2012; 51: 6828
    • 1c Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
    • 1d Schultz DM, Yoon TP. Science 2014; 343: 1239176
    • 1e Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075

      For selected reviews on enantioselective photoredox catalysis, see:
    • 2a Zhang L, Meggers E. Acc. Chem. Res. 2017; 50: 320
    • 2b Ma J, Zhang X, Huang X, Luo S, Meggers E. Nat. Protoc. 2018; 13: 605
    • 2c Garrido-Castro AF, Maestro MC, Alemán J. Tetrahedron Lett. 2018; 59: 1286
    • 2d Silvi M, Melchiorre P. Nature 2018; 554: 41
    • 2e Jiang C, Chen W, Zheng W.-H, Lu H. Org. Biomol. Chem. 2019; 17: 8673
    • 2f Zhang H.-H, Chen H, Zhu C, Yu S. Sci. China Chem. 2020; 63: 637
    • 2g Yin Y, Zhao X, Qiao B, Jiang Z. Org. Chem. Front. 2020; 7: 1283
    • 2h Hong BC. Org. Biomol. Chem. 2020; 18: 4298
    • 2i Saha D. Chem. Asian J. 2020; 15: 2129
    • 3a Chiral Amine Synthesis: Methods, Developments and Applications. Nugent TC. Wiley-VCH; Weinheim: 2010
    • 3b Kittakoop P, Mahidol C, Ruchirawat S. Curr. Top. Med. Chem. 2014; 14: 239
    • 3c Froidevaux V, Negrell C, Caillol S, Pascault J.-P, Boutevin B. Chem. Rev. 2016; 116: 14181
    • 4a Ferraris D. Tetrahedron 2007; 63: 9581
    • 4b Yamada K, Tomioka K. Chem. Rev. 2008; 108: 2874
    • 4c An G, Seifert C, Li G. Org. Biomol. Chem. 2015; 13: 1600
    • 4d Trowbridge A, Walton SM, Gaunt MJ. Chem. Rev. 2020; 120: 2613
    • 5a Lelais G, MacMillan DW. C. Aldrichimica Acta 2006; 39: 79
    • 5b Erkkilä A, Majander I, Pihko PM. Chem. Rev. 2007; 107: 5416
    • 5c MacMillan DW. C. Nature 2008; 455: 304
    • 5d Volla CM. R, Atodiresei I, Rueping M. Chem. Rev. 2014; 114: 2390
    • 6a Leitch JA, Rossolini T, Rogova T, Maitland JA. P, Dixon DJ. ACS Catal. 2020; 10: 2009
    • 6b Zou Y.-Q, Hörmann FM, Bach T. Chem. Soc. Rev. 2018; 47: 278
  • 7 Lin L, Bai X, Ye X, Zhao X, Tan C.-H, Jiang Z. Angew. Chem. Int. Ed. 2017; 56: 13842
  • 8 Knör G. Coord. Chem. Rev. 2016; 325: 102
  • 9 Guo X, Okamoto Y, Schreier MR, Ward TR, Wenger OS. Chem. Sci. 2018; 9: 5052
    • 10a Hammes-Schiffer S, Stuchebrukhov AA. Chem. Rev. 2010; 110: 6939
    • 10b Weinberg DR, Gagliardi CJ, Hull JF, Murphy CF, Kent CA, Westlake BC, Paul A, Ess DH, McCafferty DG, Meyer TJ. Chem. Rev. 2012; 112: 4016
    • 10c Gentry EC, Knowles RR. Acc. Chem. Res. 2016; 49: 1546
  • 11 Rono LJ, Yayla HG, Wang DY, Armstrong MF, Knowles RR. J. Am. Chem. Soc. 2013; 135: 17735
    • 12a Friestad GK. Tetrahedron 2001; 57: 5461
    • 12b Miyabe H, Ueda M, Naito T. Synlett 2004; 1140
    • 12c Renaud P, Giraud L. Synthesis 1996; 913
  • 13 Friestad GK, Mathies AK. Tetrahedron 2007; 63: 2541
  • 14 Friestad GK, Shen Y, Ruggles EL. Angew. Chem. Int. Ed. 2003; 42: 5061
  • 15 Li Y, Zhou K, Wen Z, Cao S, Shen X, Lei M, Gong L. J. Am. Chem. Soc. 2018; 140: 15850
  • 16 Han B, Li Y, Yu Y, Gong L. Nat. Commun. 2019; 10: 3804
  • 17 Lee KN, Lei Z, Ngai M.-Y. J. Am. Chem. Soc. 2017; 139: 5003
  • 18 Cao K, Tan SM, Lee R, Yang S, Jia H, Zhao X, Qiao B, Jiang Z. J. Am. Chem. Soc. 2019; 141: 5437
  • 19 Hager D, MacMillan DW. C. J. Am. Chem. Soc. 2014; 136: 16986
    • 20a Nakajima M, Fava E, Loescher S, Jiang Z, Rueping M. Angew. Chem. Int. Ed. 2015; 54: 8828
    • 20b Fava E, Millet A, Nakajima M, Loescher S, Rueping M. Angew. Chem. Int. Ed. 2016; 55: 6776
  • 21 Uraguchi D, Kinoshita N, Kizu T, Ooi T. J. Am. Chem. Soc. 2015; 137: 13768
  • 22 Kizu T, Uraguchi D, Ooi T. J. Org. Chem. 2016; 81: 6953
  • 23 Li Y, Lei M, Gong L. Nat. Catal. 2019; 2: 1016
  • 24 Wei Y, Zhou Q.-Q, Tan F, Lu L.-Q, Xiao W.-J. Synthesis 2019; 51: 3021
  • 25 Yoon H.-S, Ho Z.-H, Jang J, Lee H.-J, Kim S.-J, Jang H.-Y. Org. Lett. 2012; 14: 3272
  • 26 Murphy JJ, Bastida D, Paria S, Fagnoni M, Melchiorre P. Nature 2016; 532: 218
  • 27 Bahamonde A, Murphy JJ, Savarese M, Brémond É, Cavalli A, Melchiorre P. J. Am. Chem. Soc. 2017; 139: 4559
  • 28 Silvi M, Verrier C, Rey YP, Buzzetti L, Melchiorre P. Nat. Chem. 2017; 9: 868
  • 29 Mazzarella D, Crisenza GE. M, Melchiorre P. J. Am. Chem. Soc. 2018; 140: 8439
  • 30 Verrier C, Alandini N, Pezzetta C, Moliterno M, Buzzetti L, Hepburn HB, Vega-Peñaloza A, Silvi M, Melchiorre P. ACS Catal. 2018; 8: 1062
    • 31a Stavinoha J, Bay E, Leone A, Mariano PS. Tetrahedron Lett. 1980; 21: 3455
    • 31b Mariano PS, Stavinoha J, Bay E. Tetrahedron 1981; 37: 3385
  • 32 Woźniak Ł, Magagnano G, Melchiorre P. Angew. Chem. Int. Ed. 2018; 57: 1068
  • 33 Bonilla P, Rey YP, Holden CM, Melchiorre P. Angew. Chem. Int. Ed. 2018; 57: 12819
  • 34 Goti G, Bieszczad B, Vega-Peñaloza A, Melchiorre P. Angew. Chem. Int. Ed. 2019; 58: 1213
  • 35 Morack T, Mück-Lichtenfeld C, Gilmour R. Angew. Chem. Int. Ed. 2019; 58: 1208
  • 36 Zhao J.-J, Zhang H.-H, Shen X, Yu S. Org. Lett. 2019; 21: 913