Subscribe to RSS

DOI: 10.1055/a-1349-3824
Embryology, Malformations, and Rare Diseases of the Cochlea
Article in several languages: deutsch | English
Abstract
Despite the low overall prevalence of individual rare diseases, cochlear dysfunction leading to hearing loss represents a symptom in a large proportion. The aim of this work was to provide a clear overview of rare cochlear diseases, taking into account the embryonic development of the cochlea and the systematic presentation of the different disorders. Although rapid biotechnological and bioinformatic advances may facilitate the diagnosis of a rare disease, an interdisciplinary exchange is often required to raise the suspicion of a rare disease. It is important to recognize that the phenotype of rare inner ear diseases can vary greatly not only in non-syndromic but also in syndromic hearing disorders. Finally, it becomes clear that the phenotype of the individual rare diseases cannot be determined exclusively by classical genetics even in monogenetic disorders.
Publication History
Article published online:
30 April 2021
© 2021. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/).
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 O’Rahilly R. The timing and sequence of events in the development of the human eye and ear during the embryonic period proper. Anat Embryol (Berl) 1983; 168: 87-99
- 2 Som PM, Curtin HD, Liu K. et al Current Embryology of the Temporal Bone, Part II: the Middle and External Ears, the Statoacoustic and Facial Nerves, and When Things Go Developmentally Wrong. Neurographics 2016; 6: 332-349
- 3 Lavigne-Rebillard M, Pujol R. Surface Aspects of the Developing Human Organ of Corti. Acta Otolaryngol 1987; 104: 43-50
- 4 Dabdoub A, Donohue MJ, Brennan A. et al Wnt signaling mediates reorientation of outer hair cell stereociliary bundles in the mammalian cochlea. Development 2003; 130: 2375-2384
- 5 Tritsch NX, Zhang YX, Ellis-Davies G. et al ATP-induced morphological changes in supporting cells of the developing cochlea. Purinergic Signal 2010; 6: 155-166
- 6 Fettiplace R. Hair Cell Transduction, Tuning, and Synaptic Transmission in the Mammalian Cochlea. In: Comprehensive Physiology. Hoboken, NJ, USA: John Wiley & Sons, Inc.; 2017: 1197-1227
- 7 Tritsch NX, Yi E, Gale JE. et al The origin of spontaneous activity in the developing auditory system. Nature 2007; 450: 50-55
- 8 Standring S. Gray’s anatomy: the anatomical basis of clinical practice. 2016
- 9 Flint P, Haughey B, Lund V. et al Cummings Otolaryngology Head and Neck Surgery. 2020
- 10 Gibaja A, Aburto MR, Pulido S. et al TGFβ2-induced senescence during early inner ear development. Sci Rep 2019; 9: 1-13
- 11 Pujol R, Lavigne-Rebillard M. Early stages of innervation and sensory cell differentiation in the human fetal organ of Corti. Acta Otolaryngol Suppl 1985; 423: 43-50
- 12 Lavigne-Rebillard M, Pujol R. Hair Cell Innervation in the Fetal Human Cochlea. Acta Otolaryngol 1988; 105: 398-402
- 13 Moore JK, Linthicum FH. Myelination of the Human Auditory Nerve: Different Time Courses for Schwann Celland Glial Myelin. Ann Otol Rhinol Laryngol 2001; 110: 655-661
- 14 Moore JK. Organization of the human superior olivary complex. Microsc Res Tech 2000; 51: 403-412
- 15 Brown R, Groves AK. Hear, hear for notch: Control of cell fates in the inner ear by notch signaling. Biomolecules 2020; 10: 1-18
- 16 Brigande JV, Kiernan aE, Gao X. , et al Molecular genetics of pattern formation in the inner ear: do compartment boundaries play a role?. Proc Natl Acad Sci U S A 2000; 97: 11700-11706
- 17 Xu Q, Mellitzer G, Robinson V. et al In vivo cell sorting in complementary segmental domains mediated by Eph receptors and ephrins. Nature 1999; 399: 267-271
- 18 Bergemann AD, Zhang L, Chiang MK. et al Ephrin-B3, a ligand for the receptor EphB3, expressed at the midline of the developing neural tube. Oncogene 1998; 16: 471-480
- 19 Gale NW, Flenniken A, Compton DC. et al Elk-L3, a novel transmembrane ligand for the Eph family of receptor tyrosine kinases, expressed in embryonic floor plate, roof plate and hindbrain segments. Oncogene 1996; 13: 1343-1352 Im Internet http://www.ncbi.nlm.nih.gov/pubmed/8808709
- 20 Wright TJ, Hatch EP, Karabagli H. et al Expression of mouse fibroblast growth factor and fibroblast growth factor receptor genes during early inner ear development. Dev Dyn 2003; 228: 267-272
- 21 Sai X, Ladher RK. Early steps in inner ear development: Induction and morphogenesis of the otic placode. Front Pharmacol 2015; 6: 1-8
- 22 Bouchard M, de Caprona D, Busslinger M. et al Pax2 and Pax8 cooperate in mouse inner ear morphogenesis and innervation. BMC Dev Biol 2010; 10: 89.
- 23 Chatterjee S, Kraus P, Lufkin T. A symphony of inner ear developmental control genes. BMC Genet 2010; 11: 68.
- 24 Riccomagno MM. Wnt-dependent regulation of inner ear morphogenesis is balanced by the opposing and supporting roles of Shh. Genes Dev 2005; 19: 1612-1623
- 25 Bok J, Brunet LJ, Howard O. et al Role of hindbrain in inner ear morphogenesis: analysis of Noggin knockout mice. Dev Biol 2007; 311: 69-78
- 26 Bok J, Chang W, Wu DK. Patterning and morphogenesis of the vertebrate inner ear. Int J Dev Biol 2007; 51: 521-533
- 27 Wu DK, Nunes FD, Choo D. Axial specification for sensory organs versus non-sensory structures of the chicken inner ear. Development 1998; 125: 11-20 Im Internet: http://www.ncbi.nlm.nih.gov/pubmed/9389659
- 28 Duncan JS, Lim K-C, Engel JD. et al Limited inner ear morphogenesis and neurosensory development are possible in the absence of GATA3. Int J Dev Biol 2011; 55: 297-303
- 29 Zou D, Silvius D, Rodrigo-Blomqvist S. et al Eya1 regulates the growth of otic epithelium and interacts with Pax2 during the development of all sensory areas in the inner ear. Dev Biol 2006; 298: 430-441
- 30 Maroon H, Walshe J, Mahmood R. et al Fgf3 and Fgf8 are required together for formation of the otic placode and vesicle. Development 2002; 129: 2099-2108 Im Internet: http://www.ncbi.nlm.nih.gov/pubmed/11959820
- 31 Kiernan AE, Pelling AL, Leung KKH. et al Sox2 is required for sensory organ development in the mammalian inner ear. Nature 2005; 434: 1031-1035
- 32 Fritzsch B, Beisel KWK, Hansen La. The molecular basis of neurosensory cell formation in ear development: a blueprint for hair cell and sensory neuron regeneration?. Bioessays 2006; 28: 1181-1193
- 33 Fritzsch B, Matei Va, Nichols DH. et al Atoh1 null mice show directed afferent fiber growth to undifferentiated ear sensory epithelia followed by incomplete fiber retention. Dev Dyn 2005; 233: 570-583
- 34 Bermingham Na, Hassan Ba, Price SD. et al Math1: an essential gene for the generation of inner ear hair cells. Science 1999; 284: 1837-1841
- 35 Artavanis-Tsakonas S, Muskavitch MAT. Notch: the past, the present, and the future. Curr Top Dev Biol 2010; 92: 1-29
- 36 Bryant J, Goodyear RJ, Richardson GP. Sensory organ development in the inner ear: molecular and cellular mechanisms. Br Med Bull 2002; 63: 39-57 Im Internet http://www.ncbi.nlm.nih.gov/pubmed/12324383
- 37 Petit C, Richardson GP. Linking genes underlying deafness to hair-bundle development and function. Nat Neurosci 2009; 12: 703-710
- 38 Yin H, Copley CO, Goodrich LV. et al Comparison of phenotypes between different vangl2 mutants demonstrates dominant effects of the Looptail mutation during hair cell development. PLoS One 2012; 7: e31988
- 39 Sipe CW, Lu X. Kif3a regulates planar polarization of auditory hair cells through both ciliary and non-ciliary mechanisms. Development 2011; 138: 3441-3449
- 40 García-Bellido A, De Celis JF. The complex tale of the achaete-scute complex: A paradigmatic case in the analysis of gene organization and function during development. Genetics 2009; 182: 631-639
- 41 Gaspard N, Vanderhaeghen P. Mechanisms of neural specification from embryonic stem cells. Curr Opin Neurobiol 2010; 20: 37-43
- 42 Naka H, Nakamura S, Shimazaki T. et al Requirement for COUP-TFI and II in the temporal specification of neural stem cells in CNS development. Nat Neurosci 2008; 11: 1014-1023
- 43 Jahan I, Pan N, Kersigo J. et al Neurod1 suppresses hair cell differentiation in ear ganglia and regulates hair cell subtype development in the cochlea. PLoS One 2010; 5: e11661
- 44 Karis A, Pata I, van Doorninck JH. et al Transcription factor GATA-3 alters pathway selection of olivocochlear neurons and affects morphogenesis of the ear. J Comp Neurol 2001; 429: 615-630
- 45 Huang EJ, Liu W, Fritzsch B. et al Brn3a is a transcriptional regulator of soma size, target field innervation and axon pathfinding of inner ear sensory neurons. Development 2001; 128: 2421-2432 Im Internet http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2710107&tool=pmcentrez&rendertype=abstract
- 46 Jahan I, Pan N, Elliott KL. et al The quest for restoring hearing: Understanding ear development more completely. BioEssays 2015; 37: 1016-1027
- 47 Pan N, Jahan I, Kersigo J. et al Conditional deletion of Atoh1 using Pax2-Cre results in viable mice without differentiated cochlear hair cells that have lost most of the organ of Corti. Hear Res 2011; 275: 66-80
- 48 Yang T, Kersigo J, Jahan I. et al The molecular basis of making spiral ganglion neurons and connecting them to hair cells of the organ of Corti. Hear Res 2011; 278: 21-33
- 49 Fekete DM, Campero AM. Axon guidance in the inner ear. Int J Dev Biol 2007; 51: 549-556
- 50 Barclay M, Julien J-P, Ryan AF. et al Type III intermediate filament peripherin inhibits neuritogenesis in type II spiral ganglion neurons in vitro. Neurosci Lett 2010; 478: 51-55
- 51 Fritzsch B, Dillard M, Lavado A. et al Canal cristae growth and fiber extension to the outer hair cells of the mouse ear require Prox1 activity. PLoS One 2010; 5: 1-12
- 52 Fariñas I, Jones KR, Tessarollo L. et al Spatial shaping of cochlear innervation by temporally regulated neurotrophin expression. J Neurosci 2001; 21: 6170-6180 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2710117&tool=pmcentrez&rendertype=abstract
- 53 Samarajeewa A, Jacques BE, Dabdoub A. Therapeutic Potential of Wnt and Notch Signaling and Epigenetic Regulation in Mammalian Sensory Hair Cell Regeneration. Mol Ther 2019; 27: 904-911
- 54 Chai R, Kuo B, Wang T. et al Wnt signaling induces proliferation of sensory precursors in the postnatal mouse cochlea. Proc Natl Acad Sci U S A 2012; 109: 8167-8172
- 55 Bramhall NF, Shi F, Arnold K. et al Lgr5-positive supporting cells generate new hair cells in the postnatal cochlea. Stem Cell Reports 2014; 2: 311-322
- 56 McLean WJ, Yin X, Lu L. et al Clonal Expansion of Lgr5-Positive Cells from Mammalian Cochlea and High-Purity Generation of Sensory Hair Cells. Cell Rep 2017; 18: 1917-1929
- 57 Johnson Chacko L, Sergi C, Eberharter T. et al Early appearance of key transcription factors influence the spatiotemporal development of the human inner ear. Cell Tissue Res 2020; 379: 459-471
- 58 Miwa T, Ohta K, Ito N. et al Tsukushi is essential for the development of the inner ear. Mol Brain 2020; 13: 1-11
- 59 Cardoso-Moreira M, Halbert J, Valloton D. et al Gene expression across mammalian organ development. Nature 2019; 571: 505-509
- 60 Qin Y, Pan J, Cai M. et al Pattern Genes Suggest Functional Connectivity of Organs. Sci Rep 2016; 6: 1-7
- 61 Lam EWF, Brosens JJ, Gomes AR. et al Forkhead box proteins: Tuning forks for transcriptional harmony. Nat Rev Cancer 2013; 13: 482-495
- 62 Stefanovic S, Abboud N, Désilets S. et al Interplay of Oct4 with Sox2 and Sox17: A molecular switch from stem cell pluripotency to specifying a cardiac fate. J Cell Biol 2009; 186: 665-673
- 63 Som PM, Curtin HD, Liu K. et al Current Embryology of the Temporal Bone, Part I: the Inner Ear. Neurographics 2016; 6: 250-265
- 64 Lefebvre V. Roles and regulation of SOX transcription factors in skeletogenesis. Curr Top Dev Biol 2019; 133: 171-193
- 65 Heavner WE, Andoniadou CL, Pevny LH. Establishment of the neurogenic boundary of the mouse retina requires cooperation of SOX2 and WNT signaling. Neural Dev 2014; 9
- 66 Wang L, Sewell WF, Kim SD. et al Eya4 regulation of Na+/K+-ATPase in required for sensory system. development in zebrafish. Development 2008; 135: 3425-3434
- 67 Vona B, Nanda I, Hofrichter MAH. et al Non-syndromic hearing loss gene identification: A brief history and glimpse into the future. Mol Cell Probes 2015; 29: 260-270
- 68 Girirajan S, Eichler EE. Phenotypic variability and genetic susceptibility to genomic disorders. Hum Mol Genet 2010; 19: R176-R187
- 69 Génin E, Feingold J, Clerget-Darpoux F. Identifying modifier genes of monogenic disease: strategies and difficulties. Hum Genet 2008; 124: 357-368
- 70 Hildebrand MS, DeLuca AP, Taylor KR. et al A contemporary review of AudioGene audioprofiling: A machine-based candidate gene prediction tool for autosomal dominant nonsyndromic hearing loss. Laryngoscope 2009; 119: 2211-2215
- 71 Warnecke A, Prenzler NK, Schmitt H. et al Defining the Inflammatory Microenvironment in the Human Cochlea by Perilymph Analysis: Toward Liquid Biopsy of the Cochlea. Front Neurol 2019; 10: 1-10
- 72 Yue Q, Stahl F, Plettenburg O. et al The Noncompetitive Effect of Gambogic Acid Displaces Fluorescence-Labeled ATP but Requires ATP for Binding to Hsp90/HtpG. Biochemistry 2018; 57: 2601-2605
- 73 Shew M, Warnecke A, Lenarz T. et al Feasibility of microRNA profiling in human inner ear perilymph. Neuroreport 2018; 29: 894-901
- 74 Wang H, Stahl F, Scheper T. et al Microarray-based screening system identifies temperature-controlled activity of Connexin 26 that is distorted by mutations. Sci Rep 2019; 9: 13543
- 75 Mondini C. Minor works of Carlo Mondini: the anatomical section of a boy born deaf. Am J Otol 1997; 18: 288-293
- 76 Brotto D, Uberti A, Manara R. From Mondini to the latest inner ear malformations’ classifications: an historical and critical review. Hear Balanc Commun 2019; 17: 241-248
- 77 Jackler RK, Luxford WM, House WF. Congenital malformations of the inner ear: A classification based on embryo genesis. Laryngoscope 1987; 97: 2-14
- 78 Streeter GL. Developmental horizons in human embryos; a review of the histogenesis of cartilage and bone. Contrib Embryol 1949; 33: 149-168 Im Internet http://www.ncbi.nlm.nih.gov/pubmed/18144445
- 79 Sennaroğlu L, Bajin MD. Classification and current management of inner ear malformations. Balkan Med J 2017; 34: 397-411
- 80 Sennaroglu L, Saatci I. Unpartitioned Versus Incompletely Partitioned Cochleae: Radiologic Differentiation. Otol Neurotol 2004; 25: 520-529
- 81 Giesemann A, Götz F, Lanfermann H. Fehlbildungen des Innenohrs - Diagnostik und Einteilung in CT und MRT. Radiol up2date 2013; 13: 201-218
- 82 Phelps PD, Michaels L. The Common Cavity Congenital Deformity of the Inner Ear. ORL 1995; 57: 228-231
- 83 Cock E. A contribution to the pathology of congenital deafness. Guys Hosp Rep. 1838 7.
- 84 Papsin BC. Cochlear implantation in children with anomalous cochleovestibular anatomy. Laryngoscope 2005; 115: 1-26
- 85 Nance WE, Setleff R, McLeod A. et al X-linked mixed deafness with congenital fixation of the stapedial footplate and perilymphatic gusher. Birth Defects Orig Artic Ser 1971; 07: 64-69 Im Internet http://www.ncbi.nlm.nih.gov/pubmed/5173351
- 86 Phelps PD, Reardon W, Pembrey M. et al X-linked deafness, stapes gushers and a distinctive defect of the inner ear. Neuroradiology 1991; 33: 326-330
- 87 Kang WS, Shim BS, Lee KS. Audiologic performance after cochlear implantation in children with X-linked deafness: Comparison with deaf children with a normal inner ear structure. Otol Neurotol 2013; 34: 544-548
- 88 Smith JD, El-Kashlan N, Darr OAF. et al Systematic Review of Outcomes After Cochlear Implantation in Children With X-Linked Deafness-2. Otolaryngol – Head Neck Surg (United States) 2020; 1-8
- 89 de Kok YJ, van der Maarel SM, Bitner-Glindzicz M. et al Association between X-linked mixed deafness and mutations in the POU domain gene POU3F4. Science 1995; 267: 685-688
- 90 Pollak A, Lechowicz U, Kȩdra A. , et al Novel and De Novo mutations extend association of POU3F4 with distinct clinical and radiological phenotype of hearing loss. PLoS One 2016; 11: 1-13
- 91 Myhre SA, Ruvalcaba RHA, Kelley VC. Congenital deafness and hypogonadism: a new X-linked recessive disorder. Clin Genet 2008; 22: 299-307
- 92 Giesemann A, Hartmann H, Franke D. et al Hamartome in Kombination mit X-chromosomaler Taubheit zeigen keine Epilepsie und keine Pubertas praecox. In: Clinical Neuroradiology. 2013 0177.
- 93 Siddiqui A, D’Amico A, Colafati GS. et al Hypothalamic malformations in patients with X-linked deafness and incomplete partition type 3. Neuroradiology 2019; 61: 949-952
- 94 Corvino V, Apisa P, Malesci R. et al X-Linked Sensorineural Hearing Loss: A Literature Review. Curr Genomics 2017; 19: 327-338
- 95 Satar B, Mukherji SK, Telian SA. Congenital Aplasia of the Semicircular Canals. Otol Neurotol 2003; 24: 437-446
- 96 Lanson BG, Green JE, Roland JT. et al Cochlear implantation in Children with CHARGE syndrome: therapeutic decisions and outcomes. Laryngoscope 2007; 117: 1260-1266
- 97 Pagon RA, Graham JM, Zonana J. et al Coloboma, congenital heart disease, and choanal atresia with multiple anomalies: CHARGE association. J Pediatr 1981; 99: 223-227
- 98 Verloes A. Updated diagnostic criteria for CHARGE syndrome: a proposal. Am J Med Genet A 2005; 133A: 306-308
- 99 Hsu P, Ma A, Wilson M. et al CHARGE syndrome: A review. J Paediatr Child Health 2014; 50: 504-511
- 100 Kontorinis G, Goetz F, Giourgas A. et al Aplasia of the cochlea: Radiologic assessment and options for hearing rehabilitation. Otol Neurotol 2013; 34: 1253-1260
- 101 Phelps PD. Cochlear Implants For Congenital Deformities. J Laryngol Otol 1992; 106: 967-970
- 102 Dahm MC, Weber BP, Lenarz T. Cochlear implantation in a Mondini malformation of the inner ear and the management of perilymphatic gusher. Adv Otorhinolaryngol 1995; 50: 66-71
- 103 Weber BP, Lenarz T, Hartrampf R. et al Cochlear implantation in children with malformation of the cochlea. Adv Otorhinolaryngol 1995; 50: 59-65
- 104 Kontorinis G, Goetz F, Giourgas A. et al Radiological diagnosis of incomplete partition type I versus type II: significance for cochlear implantation. Eur Radiol 2012; 22: 525-532
- 105 Sennaroğlu L, Tahir E. A Novel Classification: Anomalous Routes of the Facial Nerve in Relation to Inner Ear Malformations. Laryngoscope 2020; 1-8
- 106 Halawani RT, Dhanasingh A. New Classification of Cochlear Hypoplasia Type Malformation: Relevance in Cochlear Implantation. J Int Adv Otol 2020; 16: 153-157
- 107 Cinar BC, Batuk MO, Tahir E. et al Audiologic and radiologic findings in cochlear hypoplasia. Auris Nasus Larynx 2017; 44: 655-663
- 108 Giesemann AM, Goetz F, Neuburger J. et al Appearance of hypoplastic cochleae in CT and MRI: A new subclassification. Neuroradiology 2011; 53: 49-61
- 109 Harnsberger HR. Diagnostic Imaging Head and Neck. 2004
- 110 Giesemann AM, Kontorinis G, Jan Z. et al The vestibulocochlear nerve: Aplasia and hypoplasia in combination with inner ear malformations. Eur Radiol 2012; 22: 519-524
- 111 Dörr J, Krautwald S, Wildemann B. et al Characteristics of Susac syndrome: A review of all reported cases. Nat Rev Neurol 2013; 9: 307-316
- 112 Kleffner I, Dörr J, Ringelstein M. et al Diagnostic criteria for Susac syndrome. J Neurol Neurosurg Psychiatry 2016; 87: 1287-1295
- 113 Hertzano R, Tomlinson JA, Mackowiak PA. Goya’s Lost Hearing: A Twenty-First Century Perspective on Its Cause, Effects and Possible Treatment. Am J Med Sci 2019; 357: 275-279
- 114 Schelenz D, Kleffner I, Tsiampalis N. et al Susac syndrome – interdisciplinary tracking of the chameleon: two different case reports. Ophthalmologe 2020; 117: 369-375
- 115 Wang Y, Burkholder B, Newsome SD. Progressive sensorineural hearing loss many years preceding completion of Susac’s syndrome triad: A case report. Mult Scler Relat Disord 2020; 37: 101436
- 116 Kleffner I, Duning T, Lohmann H. et al A brief review of Susac syndrome. J Neurol Sci 2012; 322: 35-40
- 117 Plontke SK, Caye-Thomasen P, Strauss C. et al Management of transmodiolar and transmacular cochleovestibular schwannomas with and without cochlear implantation. HNO. 2020
- 118 Baskin J, Hardy TA, Law LY. et al Black blood MRI: endotheliopathy of Susac syndrome unmasked. Neurol Sci 2020; 8-10
- 119 Mei X, Glueckert R, Schrott-Fischer A. et al Vascular Supply of the Human Spiral Ganglion: Novel Three-Dimensional Analysis Using Synchrotron Phase-Contrast Imaging and Histology. Sci Rep 2020; 10: 5877
- 120 Ishiyama G, Wester J, Lopez IA. et al Oxidative stress in the blood labyrinthine barrier in the macula utricle of Meniere’s disease patients. Front Physiol 2018; 9: 1-16
- 121 Gu C, Qiao W, Wang L. et al Identification of genes and pathways associated with multiple organ dysfunction syndrome by microarray analysis. Mol Med Rep 2018; 18: 31-40
- 122 Ishiyama G, Lopez IA, Acuna D. et al Investigations of the Microvasculature of the Human Macula Utricle in Meniere’s Disease. Front Cell Neurosci 2019; 13: 1-11
- 123 Schmitt HA, Pich A, Schröder A. et al Proteome Analysis of Human Perilymph using an Intraoperative Sampling Method. J Proteome Res. 2017 acs.jproteome.6b00986
- 124 Lin HC, Ren Y, Lysaght AC. et al Proteome of normal human perilymph and perilymph from people with disabling vertigo. PLoS One 2019; 14: 1-21
- 125 Lage K, Hansena NT, Karlberg EO. et al A large-scale analysis of tissue-specific pathology and gene expression of human disease genes and complexes. Proc Natl Acad Sci U S A 2008; 105: 20870-20875
- 126 Knipper M, Hofmeier B, Singer W. et al Differentiating cochlear synaptopathies into different hearing disorders. HNO 2019; 67: 406-416
- 127 Espinoza GM, Wheeler J, Temprano KK. et al Cogan’s Syndrome: Clinical Presentations and Update on Treatment. Curr Allergy Asthma Rep 2020; 20: 2-7
- 128 Kuemmerle-Deschner JB, Koitschev A, Ummenhofer K. et al Hearing loss in Muckle-Wells syndrome. Arthritis Rheum 2013; 65: 824-831
- 129 Goldbach-Mansky R, Dailey NJ, Canna SW. et al Neonatal-Onset Multisystem Inflammatory Disease Responsive to Interleukin-1β Inhibition. N Engl J Med 2006; 355: 581-592
- 130 Bachor E, Blevins NH, Karmody C. et al Otologic manifestations of relapsing polychondritis. Auris Nasus Larynx 2006; 33: 135-141
- 131 Noguchi Y, Nishio A, Takase H. et al Audiovestibular findings in patients with Vogt-Koyanagi-Harada disease. Acta Otolaryngol 2014; 134: 339-344
- 132 Kemal O, Anadolu Y, Boyvat A. et al Behçet Disease as a Cause of Hearing Loss: A Prospective, Placebo-Controlled Study of 29 Patients. Ear, Nose Throat J 2013; 92: 112-120
- 133 Ovadia S, Dror I, Zubkov T. et al Churg-Strauss syndrome: A rare presentation with otological and pericardial manifestations: Case report and review of the literature. Clin Rheumatol 2009; 28: 35-38
- 134 Moosig F, Holle J. Current treatment of eosinophilic granulomatosis with polyangiitis (Churg-Strauss syndrome). Z Rheumatol 2019; 78: 333-338
- 135 rarediseases.org Im Internet https://rarediseases.org/rare-diseases/alpha-mannosidosis/ Stand: 16.08.2020
- 136 Faverio P, Bonaiti G, Bini F. et al Mepolizumab as the first targeted treatment for eosinophilic granulomatosis with polyangiitis: A review of current evidence and potential place in therapy. Ther Clin Risk Manag 2018; 14: 2385-2396
- 137 Brachet C, Mansbach AL, Clerckx A. et al Hearing Loss Is Part of the Clinical Picture of ENPP1 Loss of Function Mutation. Horm Res Paediatr 2014; 81: 63-66
- 138 Maher CO, Piepgras DG, Brown RD. et al Cerebrovascular manifestations in 321 cases of hereditary hemorrhagic telangiectasia. Stroke 2001; 32: 877-882
- 139 Kim GB. Reality of Kawasaki disease epidemiology. Korean J Pediatr 2019; 62: 292-296
- 140 Rahne T, Plontke S, Keyßer G. Vasculitis and the ear: A literature review. Curr Opin Rheumatol 2020; 32: 47-52
- 141 Nadol JB, Eavey RD, Liberfarb RM. , et al Histopathology of the ears, eyes, and brain in norrie’s disease (oculoacousticocerebral degeneration). Am J Otolaryngol 1990; 11: 112-124
- 142 Gross CC, Meyer C, Bhatia U. et al CD8+ T cell-mediated endotheliopathy is a targetable mechanism of neuro-inflammation in Susac syndrome. Nat Commun 2019; 10.
- 143 Naini AS, Ghorbani J, Elahi SML. et al Otologic manifestations in patients with Wegener’s granulomatosis: A survey in 55 patients. Iran J Otorhinolaryngol 2017; 29: 327-331
- 144 Marsot-Dupuch K, Dominguez-Brito A, Ghasli K. et al CT and MR findings of Michel anomaly: Inner ear aplasia. Am J Neuroradiol 1999; 20: 281-284
- 145 Daneshi A, Farhadi M, Asghari A. et al Three familial cases of Michel’s aplasia. Otol Neurotol 2002; 23: 346-348
- 146 Giesemann AM, Goetz F, Neuburger J. et al From labyrinthine aplasia to otocyst deformity. Neuroradiology 2010; 52: 147-154
- 147 Vesseur AC, Verbist BM, Westerlaan HE. et al CT findings of the temporal bone in CHARGE syndrome: aspects of importance in cochlear implant surgery. Eur Arch Oto-Rhino-Laryngology 2016; 273: 4225-4240
- 148 Giesemann AM, Goetz GF, Neuburger J. et al Persistent petrosquamosal sinus: High incidence in cases of complete aplasia of the semicircular canals. Radiology 2011; 259: 825-833
- 149 Sennaroglu L, Saatci I. A New Classification for Cochleovestibular Malformations. Laryngoscope 2002; 112: 2230-2241
- 150 Bademci G, Abad C, Incesulu A. et al FOXF2 is required for cochlear development in humans and mice. Hum Mol Genet 2019; 28: 1286-1297
- 151 Alballaa A, Aschendorff A, Arndt S. et al Incomplete partition type III“ – Langzeitergebnisse nach Cochleaimplantation. HNO 2019; 67: 760-768
- 152 Kaur A, Khetarpal S. 3P Deletion Syndrome. Indian Pediatr 2013; 50: 795-796
- 153 Ţuţulan-Cuniţǎ AC, Papuc SM, Arghir A. , et al 3p interstitial deletion: Novel case report and review. J Child Neurol 2012; 27: 1062-1066
- 154 Lindstrand A, Malmgren H, Verri A. et al Molecular and clinical characterization of patients with overlapping 10p deletions. Am J Med Genet Part A 2010; 152: 1233-1243
- 155 Ohta S, Isojima T, Mizuno Y. et al Partial monosomy of 10p and duplication of another chromosome in two patients. Pediatr Int 2017; 59: 99-102
- 156 Corrêa T, Feltes BC, Riegel M. Integrated analysis of the critical region 5p15.3–p15.2 associated with cri-du-chat syndrome. Genet Mol Biol 2019; 42: 186-196
- 157 Swanepoel D. Auditory pathology in cri-du-chat (5p-) syndrome: Phenotypic evidence for auditory neuropathy. Clin Genet 2007; 72: 369-373
- 158 Du Q, de la Morena MT, van Oers NSC. The Genetics and Epigenetics of 22q11.2 Deletion Syndrome. Front Genet 2020; 10: 1-16
- 159 Bhalla P, Wysocki CA, van Oers NSC. Molecular Insights Into the Causes of Human Thymic Hypoplasia With Animal Models. Front Immunol 2020; 11
- 160 Romagna ES, Appel da Silva MC, Zanetti Ballardin PA. Schmid-Fraccaro Syndrome: Severe Neurologic Features. Pediatr Neurol 2010; 42: 151-153
- 161 Alamer L, Bassant S, Alhazmi R. et al Rare otologic presentation of cat eye syndrome. Ann Saudi Med 2019; 39: 441-443
- 162 Crawford TD, Audia JE, Bellon S. , et al GNE-886: A Potent and Selective Inhibitor of the Cat Eye Syndrome Chromosome Region Candidate 2 Bromodomain (CECR2). ACS Med Chem Lett 2017; 8: 737-741
- 163 Pejcic L, Stankovic T, Ratkovic-Jankovic M. et al Clinical manifestations in trisomy 9 mosaicism. Turk J Pediatr 2018; 60: 729-734
- 164 Dhangar S, Korgaonkar S, Vundinti BR. Partial trisomy 9 (9pter->9q22.1) and partial monosomy 14 (14pter->14q11.2) due to paternal translocation t(9(q22.1;q11.2) in a case of Dysmorphic features. Intractable Rare Dis Res 2019; 8: 72-77
- 165 Lee CY, Su HJ, Cheng YT. et al Detection of fetal trisomy 9 mosaicism by noninvasive prenatal testing through maternal plasma DNA sequencing. Taiwan J Obstet Gynecol 2018; 57: 594-597
- 166 Thomas S, Parker M, Tan J. et al Ocular manifestations of mosaic trisomy 22: A case report and review of the literature. Ophthalmic Genet 2004; 25: 53-56
- 167 Abdelgadir D, Nowaczyk MJM, Li C. Trisomy 22 Mosaicism and Normal Developmental Outcome: Report of Two Patients and Review of the Literature. Am J Med Genet Part A 2013; 161: 1126-1131
- 168 Schuster M, Hoppe U, Eysholdt U. et al Severe Hearing Loss in Pallister-Killian Syndrome. ORL 2002; 64: 343-345
- 169 Brendal MA, King KA, Zalewski CK. et al Auditory Phenotype of Smith–Magenis Syndrome. J Speech, Lang Hear Res 2017; 60: 1076-1087
- 170 Lei M, Liang D, Yang Y. et al Long-read DNA sequencing fully characterized chromothripsis in a patient with Langer–Giedion syndrome and Cornelia de Lange syndrome-4. J Hum Genet 2020; 65: 667-674
- 171 Nouws J, Wibrand F, van den Brand M. et al A Patient with Complex I Deficiency Caused by a Novel ACAD9 Mutation Not Responding to Riboflavin Treatment. In: JIMD Reports 2013; 37-45
- 172 Dewulf JP, Barrea C, Vincent MF. et al Evidence of a wide spectrum of cardiac involvement due to ACAD9 mutations: Report on nine patients. Mol Genet Metab 2016; 118: 185-189
- 173 Yazdanfard PD, Madsen CV, Nielsen LH. et al Significant hearing loss in Fabry disease: Study of the Danish nationwide cohort prior to treatment. PLoS One 2019; 14: e0225071
- 174 Syed Haneef SA, George Priya Doss C. Personalized Pharmacoperones for Lysosomal Storage Disorder: Approach for Next-Generation Treatment. Adv Protein Chem Struct Biol 2016; 102: 225-265
- 175 orpha.net
- 176 Ärztezeitung.de Im Internet https://www.aerztezeitung.de/Specials/Lamzede-erste-Enzymersatztherapie-fuer-Patienten-mit-Alpha-Mannosidose-255697.html; Stand: 16.08.2020
- 177 Lehalle D, Colombo R, O’Grady M. et al Hearing impairment as an early sign of alpha-mannosidosis in children with a mild phenotype: Report of seven new cases. Am J Med Genet Part A 2019; 179: 1756-1763
- 178 Canda E, Kalkan Uçar S, Çoker M. Biotinidase Deficiency: Prevalence, Impact And Management Strategies. . Pediatr Heal Med Ther 2020; 11: 127-133
- 179 Jaeger B, Bosch AM. Clinical presentation and outcome of riboflavin transporter deficiency: mini review after five years of experience. J Inherit Metab Dis 2016; 39: 559-564
- 180 Garg M, Kulkarni S, Hegde A. et al Riboflavin treatment in genetically proven Brown–Vialetto–Van Laere syndrome. J Pediatr Neurosci 2018; 13: 471
- 181 Dhar SU, Taylor T, Trinh C. et al Cranio-meta-diaphyseal dysplasia: 25 Year follow-up and review of literature. Am J Med Genet Part A 2010; 152: 2335-2338
- 182 PLM Huygen, CWRJ Cremers, WIM Verhagen. , et al Camurati-Engelmann disease presenting as „juvenile otosclerosis“. Int J Pediatr Otorhinolaryngol 1996; 37: 129-141
- 183 Carlson ML, Beatty CW, Neff BA. et al Skull base manifestations of Camurati-Engelmann disease. Arch Otolaryngol - Head Neck Surg 2010; 136: 566-575
- 184 Kim YM, Kang E, Choi JH. et al Clinical characteristics and treatment outcomes in Camurati-Engelmann disease. Med (United States) 2018; 97: 1-6
- 185 Qin Y, Tang S, Zhen G. et al Bone-targeted delivery of TGF-β type 1 receptor inhibitor rescues uncoupled bone remodeling in Camurati-Engelmann disease. Ann N Y Acad Sci 2018; 1433: 29-40
- 186 Lenarz T. JG Neuro-otologic early symptoms of Camurati-Engelmann disease. Laryngol Rhinol Otol (Stuttg) 1983; 62: 463-467
- 187 Louhichi N, Bahloul E, Marrakchi S. et al Thyroid involvement in Chanarin-Dorfman syndrome in adults in the largest series of patients carrying the same founder mutation in ABHD5 gene. Orphanet J Rare Dis 2019; 14: 1-8
- 188 Faruqi T, Dhawan N, Bahl J. et al Molecular, phenotypic aspects and therapeutic horizons of rare genetic bone disorders. Biomed Res Int. 2014: 2014
- 189 Sun GH, Samy RN, Tinkle BT. et al Imaging Case of the Month Craniometaphyseal Dysplasia-Induced Hearing Loss. 2011: 9-10
- 190 Vasu CK, Rajendran VR, Regi George AN. et al Progressive facial disfigurement and deafness in craniometaphyseal dysplasia. Indian J Pediatr 2006; 73: 1105.
- 191 Haffner D, Emma F, Eastwood DM. et al Clinical practice recommendations for the diagnosis and management of X-linked hypophosphataemia. Nat Rev Nephrol 2019; 15: 435-455
- 192 Morava E, Kühnisch J, Drijvers JM. et al Autosomal recessive mental retardation, deafness, ankylosis, and mild hypophosphatemia associated with a novel ANKH mutation in a consanguineous family. J Clin Endocrinol Metab 2011; 96: 189-198
- 193 Kyriakou K, Lederer CW, Kleanthous M. et al Acid ceramidase depletion impairs neuronal survival and induces morphological defects in neurites associated with altered gene transcription and sphingolipid content. Int J Mol Sci 2020; 21: 1-24
- 194 Yu FPS, Amintas S, Levade T. et al Acid ceramidase deficiency: Farber disease and SMA-PME. Orphanet J Rare Dis 2018; 13: 1-19
- 195 Pignolo RJ, Wang H, Kaplan FS. Fibrodysplasia Ossificans Progressiva (FOP): A Segmental Progeroid Syndrome. Front Endocrinol (Lausanne) 2020; 10: 1-8
- 196 Kaplan FS, Kobori JA, Orellana C. et al Multi-system involvement in a severe variant of fibrodysplasia ossificans progressiva ( ACVR1 c.772G>A; R258G): A report of two patients. Am J Med Genet Part A 2015; 167: 2265-2271
- 197 Jaeken J, Vleugels W, Régal L. et al RFT1-CDG: Deafness as a novel feature of congenital disorders of glycosylation. J Inherit Metab Dis 2009; 32: 335-338
- 198 Kościelak J. Congenital disorders of glycosylation. Handb Carbohydr Eng 2005; 6: 99-140
- 199 Mohamed M, Guillard M, Wortmann SB. et al Clinical and diagnostic approach in unsolved CDG patients with a type 2 transferrin pattern. Biochim Biophys Acta - Mol Basis Dis 2011; 1812: 691-698
- 200 Sedel F, Challe G, Mayer JM. et al Thiamine responsive pyruvate dehydrogenase deficiency in an adult with peripheral neuropathy and optic neuropathy. J Neurol Neurosurg Psychiatry 2008; 79: 846-847
- 201 Naito E, Ito M, Yokota I. et al Thiamine-responsive pyruvate dehydrogenase deficiency in two patients caused by a point mutation (F205L and L216F) within the thiamine pyrophosphate binding region. Biochim Biophys Acta – Mol Basis Dis 2002; 1588: 79-84
- 202 Sun A. Lysosomal storage disease overview. Ann Transl Med 2018; 6: 476
- 203 Dʹavanzo F, Rigon L, Zanetti A. , et al Mucopolysaccharidosis type II: One hundred years of research, diagnosis, and treatment. Int J Mol Sci. 2020 21.
- 204 King KA, Gordon-Salant S, Yanjanin N. et al Auditory Phenotype of Niemann-Pick Disease, Type C1. Ear Hear. 2014 35.
- 205 Lipari Pinto P, Machado C, Janeiro P. et al Ngly1 deficiency—a rare congenital disorder of deglycosylation. JIMD Rep 2020; 53: 2-9
- 206 RFM Rosa, da Silva AP, Goetze TB. , et al Ear abnormalities in patients with oculo-auriculo-vertebral spectrum (Goldenhar syndrome). Braz J Otorhinolaryngol 2011; 77: 455-460
- 207 Vargas-Poussou R, Houillier P, Le Pottier N. et al Genetic Investigation of Autosomal Recessive Distal Renal Tubular Acidosis: Evidence for Early Sensorineural Hearing Loss Associated with Mutations in the ATP6V0A4 Gene. J Am Soc Nephrol 2006; 17: 1437-1443
- 208 Hanisch F, Rahne T, Plontke SK. Prevalence of hearing loss in patients with late-onset Pompe disease: Audiological and otological consequences. Int J Audiol 2013; 52: 816-823
- 209 Oysu C, Aslan I, Basaran B. et al The site of the hearing loss in Refsum’s disease. Int J Pediatr Otorhinolaryngol 2001; 61: 129-134
- 210 Vandana VP, Bindu PS, Nagappa M. et al Audiological findings in Infantile Refsum disease. Int J Pediatr Otorhinolaryngol 2015; 79: 1366-1369
- 211 Bamiou D-E, Spraggs PRD, Gibberd FB. et al Hearing loss in adult Refsum’s disease. Clin Otolaryngol Allied Sci 2003; 28: 227-230
- 212 Liberman MC, Tartaglini E, Fleming JC. et al Deletion of SLC19A2, the high affinity thiamine transporter, causes selective inner hair cell loss and an auditory neuropathy phenotype. JARO - J Assoc Res Otolaryngol 2006; 7: 211-217
- 213 Di Giaimo R, Riccio M, Santi S. et al Targeted disruption of Slc19a2, the gene encoding the high-affinity thiamin transporter Thtr-1, causes diabetes mellitus, sensorineural deafness and megaloblastosis in mice. Hum Mol Genet 2002; 11: 2951-2960
- 214 Mohamed FE, Al Sorkhy M, Ghattas MA. et al A Novel Homozygous Missense Variant in the NAGA Gene with Extreme Intrafamilial Phenotypic Heterogeneity. J Mol Neurosci 2020; 70: 45-55
- 215 Rodríguez-Pazos L, Ginarte M, Vega A. et al Autosomal recessive congenital ichthyosis. Actas Dermosifiliogr 2013; 104: 270-284
- 216 Fekete R. Xeroderma pigmentosum/De Sanctis-Cacchione syndrome: Unusual cause of ataxia. . Case Rep Neurol 2014; 6: 83-87
- 217 Rahbar Z, Naraghi M. De Sanctis-Cacchione syndrome: A case report and literature review. Int J Women’s Dermatology 2015; 1: 136-139
- 218 Kale K, Ghonge N, Kaul A. Prenatal diagnosis of congenital harlequin ichthyosis with fetal MRI. Indian J Radiol Imaging 2019; 29: 448.
- 219 Cammarata-Scalisi F, Willoughby CE, Cárdenas Tadich A. et al Clinical, etiopathogenic, and therapeutic aspects of KID syndrome. Dermatol Ther. 2020
- 220 Shuja Z, Li L, Gupta S. et al Connexin26 mutations causing palmoplantar keratoderma and deafness interact with connexin43, modifying gap junction and hemichannel properties. J Invest Dermatol 2016; 136: 225-235
- 221 Yoon HK, Sargent MA, Prendiville JS. et al Cerebellar and cerebral atrophy in trichothiodystrophy. Pediatr Radiol 2005; 35: 1019-1023
- 222 Valverde D, Alvarez-Satta M, Castro-Sánchez S. Alström syndrome: current perspectives. Appl Clin Genet. 2015: 171.
- 223 Mittal R, Patel K, Mittal J. et al Association of PRPS1 Mutations with Disease Phenotypes. Dis Markers 2015; 2015: 1-7
- 224 Barakat AJ, Raygada M, Rennert OM. Barakat syndrome revisited. Am J Med Genet Part A 2018; 176: 1341-1348
- 225 Sheehan-Rooney K, Swartz ME, Zhao F. , et al Ahsa1 and Hsp90 activity confers more severe craniofacial phenotypes in a zebrafish model of hypoparathyroidism, sensorineural deafness and renal dysplasia (HDR). DMM Dis Model Mech 2013; 6: 1285-1291
- 226 Husson H, Bukanov NO, Moreno S. et al Correction of cilia structure and function alleviates multi-organ pathology in Bardet–Biedl syndrome mice. Hum Mol Genet 2020; 00: 1-15
- 227 M’Hamdi O, Ouertani I, Chaabouni-Bouhamed H. Update on the genetics of bardet-biedl syndrome. Mol Syndromol 2014; 5: 51-56
- 228 Datta P, Ruffcorn A, Seo S. Limited time window for retinal gene therapy in a preclinical model of ciliopathy. Hum Mol Genet 2020; 29: 2337-2352
- 229 Gajendragadkar A, Bhamkar R. Antenatal Bartter′s syndrome with sensorineural deafness. Indian J Nephrol 2009; 19: 23.
- 230 Miyamura N, Matsumoto K, Taguchi T. et al Atypical Bartter Syndrome with Sensorineural Deafness with G47R Mutation of the β-Subunit for ClC-Ka and ClC-Kb Chloride Channels, Barttin. J Clin Endocrinol Metab 2003; 88: 781-786
- 231 Zhang J, Duo L, Lin Z. et al Exome sequencing reveals novel BCS1L mutations in siblings with hearing loss and hypotrichosis. Gene 2015; 566: 84-88
- 232 Min J, Mao B, Wang Y. et al A Heterozygous Novel Mutation in TFAP2A Gene Causes Atypical Branchio-Oculo-Facial Syndrome With Isolated Coloboma of Choroid: A Case Report. Front Pediatr 2020; 8: 1-6
- 233 Milunsky JM, Maher TA, Zhao G. et al TFAP2A Mutations Result in Branchio-Oculo-Facial Syndrome. Am J Hum Genet 2008; 82: 1171-1177
- 234 Klingbeil KD, Greenland CM, Arslan S. et al Novel EYA1 variants causing Branchio-oto-renal syndrome. Int J Pediatr Otorhinolaryngol 2017; 98: 59-63
- 235 Shah AM, Krohn P, Baxi AB. et al Six1 proteins with human branchio-oto-renal mutations differentially affect cranial gene expression and otic development. DMM Dis Model Mech 2020; 13.
- 236 Hsu A, Desai N, Paldino MJ. The Unwound Cochlea: A Specific Imaging Marker of Branchio-Oto-Renal Syndrome. AJNR Am J Neuroradiol 2018; 39: 2345-2349
- 237 Boudhina T, Yedes A, Khiari S. et al Familial syndrome combining short stature, microcephaly, mental deficiency, seizures, hearing loss, and skin lesions. A new syndrome. ediatr (Paris) 1990; 37: 399-403
- 238 Hasan MR, Takatalo M, Ma H. et al RAB23 coordinates early osteogenesis by repressing FGF10-pERK1/2 and GLI1. Elife 2020; 9: 1-26
- 239 Tarhan E, Oğuz H, Şafak MA. , et al The Carpenter syndrome phenotype. Int J Pediatr Otorhinolaryngol 2004; 68: 353-357
- 240 Twigg SRF, Lloyd D, Jenkins D. et al Mutations in multidomain protein MEGF8 identify a carpenter syndrome subtype associated with defective lateralization. Am J Hum Genet 2012; 91: 897-905
- 241 Bérubé-Simard FA, Pilon N. Molecular dissection of CHARGE syndrome highlights the vulnerability of neural crest cells to problems with alternative splicing and other transcription-related processes. Transcription 2019; 10: 21-28
- 242 Karikkineth AC, Scheibye-Knudsen M, Fivenson E. et al Cockayne syndrome: Clinical features, model systems and pathways. Ageing Res Rev 2017; 33: 3-17
- 243 Morris DP, Alian W, Maessen H. , et al Cochlear implantation in Cockayne syndrome: Our experience of two cases with different outcomes. Laryngoscope 2007; 117: 939-943
- 244 Hanauer A, Young ID. Coffin-Lowry syndrome: Clinical and molecular features. J Med Genet 2002; 39: 705-713
- 245 Rosanowski F, Eysholdt U. Late-Onset Sensorineural Hearing Loss in Coffin-Lowry Syndrome 1998; 224-226
- 246 Vasileiou G, Vergarajauregui S, Endele S. et al Mutations in the BAF-Complex Subunit DPF2 Are Associated with Coffin-Siris Syndrome. Am J Hum Genet 2018; 102: 468-479
- 247 Schrier SA, Bodurtha JN, Burton B. et al The Coffin-Siris syndrome: A proposed diagnostic approach and assessment of 15 overlapping cases. Am J Med Genet Part A 2012; 158A: 1865-1876
- 248 Sarogni P, Pallotta MM, Musio A. Cornelia de Lange syndrome: From molecular diagnosis to therapeutic approach. J Med Genet 2020; 57: 289-295
- 249 Avagliano L, Parenti I, Grazioli P. et al Chromatinopathies: A focus on Cornelia de Lange syndrome. Clin Genet 2020; 97: 3-11
- 250 Marchisio P, Selicorni A, Bianchini S. et al Audiological findings, genotype and clinical severity score in Cornelia de Lange syndrome. Int J Pediatr Otorhinolaryngol 2014; 78: 1045-1048
- 251 Kurkiewicz A, Cooper A, McIlwaine E. et al Towards development of a statistical framework to evaluate myotonic dystrophy type 1 mRNA biomarkers in the context of a clinical trial. PLoS One 2020; 15: 1-19
- 252 Van Vliet J, Tieleman AA, Van Engelen BGM. et al Hearing impairment in patients with myotonic dystrophy type 2. Neurology 2018; 90: e615-e622
- 253 Balatsouras DG, Felekis D, Panas M. et al Inner ear dysfunction in myotonic dystrophy type 1. Acta Neurol Scand 2013; 127: 337-343
- 254 Khalifa O, Al-Sahlawi Z, Imtiaz F. et al Variable expression pattern in Donnai-Barrow syndrome: Report of two novel LRP2 mutations and review of the literature. Eur J Med Genet 2015; 58: 293-299
- 255 Kantarci S, Al-Gazali L, Hill RS. et al Mutations in LRP2, which encodes the multiligand receptor megalin, cause Donnai-Barrow and facio-oculo-acoustico-renal syndromes. Nat Genet 2007; 39: 957-959
- 256 Campeau PM, Kasperaviciute D, Lu JT. et al The genetic basis of DOORS syndrome: an exome-sequencing study. Lancet Neurol 2014; 13: 44-58
- 257 Campeau PM, Hennekam RC, Aftimos S. , et al DOORS syndrome: Phenotype, genotype and comparison with coffin-siris syndrome. Am J Med Genet Part C Semin Med Genet 2014; 166: 327-332
- 258 Pradhan N, Shilawant J, Akkamahadevi CH. et al Ehlers-Danlos syndrome with huge bladder diverticulum in pregnancy – A rare and interesting case report. Eur J Obstet Gynecol Reprod Biol 2020; 250: 231-234
- 259 Ritelli M, Dordoni C, Cinquina V. et al Expanding the clinical and mutational spectrum of B4GALT7-spondylodysplastic Ehlers-Danlos syndrome. Orphanet J Rare Dis 2017; 12: 1-7
- 260 Fryns JP. Fountain’s syndrome: Mental retardation, sensorineural deafness, skeletal abnormalities, and coarse face with full lips. J Med Genet 1989; 26: 722-724
- 261 Poling MI, Dufresne CR, Chamberlain RL. Findings, Phenotypes, Diagnostic Accuracy, and Treatment in Freeman-Burian Syndrome. J Craniofac Surg 2020; 31: 1063-1069
- 262 Regev M, Pode-Shakked B, Jacobson JM. et al Phenotype variability in Hajdu-Cheney syndrome. Eur J Med Genet 2019; 62: 35-38
- 263 Abu-Amero KK, Hagr AAl, Almomani MO. et al HOXA1 mutations are not commonly associated with non-syndromic deafness. Can J Neurol Sci 2014; 41: 448-451
- 264 Lai WF, Wong WT. Progress and trends in the development of therapies for Hutchinson–Gilford progeria syndrome. Aging Cell 2020; 19: 1-17
- 265 Liu S, Wang Z, Jiang J. et al Severe forms of Johanson-Blizzard syndrome caused by two novel compound heterozygous variants in UBR1: Clinical manifestations, imaging findings and molecular genetics. Pancreatology 2020; 20: 562-568
- 266 Friez MJ, Brooks SS, Stevenson RE. et al HUWE1 mutations in Juberg-Marsidi and Brooks syndromes: The results of an X-chromosome exome sequencing study. BMJ Open 2016; 6: 1-9
- 267 Cuvertino S, Hartill V, Colyer A. et al A restricted spectrum of missense KMT2D variants cause a multiple malformations disorder distinct from Kabuki syndrome. Genet Med 2020; 22: 867-877
- 268 Stamou MI, Georgopoulos NA. Kallmann syndrome: phenotype and genotype of hypogonadotropic hypogonadism. Metabolism 2018; 86: 124-134
- 269 Finsterer J, Winklehner M, Stöllberger C. et al Unusual Phenotype and Disease Trajectory in Kearns–Sayre Syndrome. Case Rep Neurol Med 2020; 2020: 1-6
- 270 Weidauer H, Lenarz T. Kearns-Sayre syndrome from the otorhinolaryngologic viewpoint. Laryngol Rhinol Otol (Stuttg) 1984; 63: 141-146
- 271 Frikha R. Klippel-Feil syndrome: a review of the literature. Clin Dysmorphol 2020; 29: 35-37
- 272 Mayer B, Lenarz T, Haels J. Cervically-induced symptoms of the Klippel-Feil syndrome. Laryngol Rhinol Otol (Stuttg) 1984; 63: 364-370
- 273 Husain Q, Cho J, Neugarten J. et al Surgery of the head and neck in patient with Kniest dysplasia: Is wound healing an issue?. Int J Pediatr Otorhinolaryngol 2017; 93: 97-99
- 274 Hey Ryu Y, Kyun Chae J, Kim JW. et al Lacrimo-auriculo-dento-digital syndrome: A novel mutation in a Korean family and review of literature. Mol Genet Genomic Med 2020; 1-11
- 275 Muzio MR, Cascella M, Al Khalili Y. Landau Kleffner Syndrome. 2020 Im Internet http://www.ncbi.nlm.nih.gov/pubmed/31613525
- 276 Kim J, Kim MR, Kim HJ. et al LEOPARD syndrome with PTPN11 gene mutation showing six cardinal symptoms of LEOPARD. Ann Dermatol 2011; 23: 232-235
- 277 Levy J, Chung W, Garzon M. et al Congenital myopathy, recurrent secretory diarrhea, bullous eruption of skin, microcephaly, and deafness: A new genetic syndrome?. Am J Med Genet 2003; 116: 20-25
- 278 Griffith AJ, Sprunger LK, Sirko-Osadsa DA. et al Marshall Syndrome Associated with a Splicing Defect at the COL11A1 Locus. Am J Hum Genet 1998; 62: 816-823
- 279 Rawle M, Larner A. NARP Syndrome: A 20-Year Follow-Up. Case Rep Neurol 2013; 5: 204-207
- 280 Strubbe EH, CWRJ Cremers, Dikkers FG. , et al Hearing loss and the Mayer-Rokitansky-Kuster-Hauser syndrome. Am J Otol 1994; 15: 431-436
- 281 Boyce AM, Collins MT. Fibrous Dysplasia/McCune-Albright Syndrome: A Rare, Mosaic Disease of Gα s Activation. Endocr Rev 2020; 41: 345-370
- 282 Di Stadio A, Pegoraro V, Giaretta L. et al Hearing impairment in MELAS: New prospective in clinical use of microRNA, a systematic review. Orphanet J Rare Dis 2018; 13: 1-9
- 283 Handzel O, Ungar OJ, Lee DJ. et al Temporal bone histopathology in MELAS syndrome. Laryngoscope Investig Otolaryngol 2020; 5: 152-156
- 284 Tsutsumi T, Nishida H, Noguchi Y. et al Audiological findings in patients with myoclonic epilepsy associated with ragged-red fibres. J Laryngol Otol 2001; 115.
- 285 Picciolini O, Porro M, Cattaneo E. et al Moebius syndrome: clinical features, diagnosis, management and early intervention. Ital J Pediatr 2016; 42: 56.
- 286 Gürsoy S, Hazan F, Öztürk T. et al Novel Ocular and Inner Ear Anomalies in a Patient with Myhre Syndrome. Mol Syndromol 2020; 10: 339-343
- 287 Melkoniemi M, Brunner HG, Manouvrier S. et al Autosomal recessive disorder otospondylomegaepiphyseal dysplasia is associated with loss-of-function mutations in the COL11A2 gene. Am J Hum Genet 2000; 66: 368-377
- 288 Koffler T, Ushakov K, Avraham KB. Genetics of Hearing Loss. Otolaryngol Clin North Am 2015; 48: 1041-1061
- 289 Gettelfinger J, Dahl J. Syndromic Hearing Loss: A Brief Review of Common Presentations and Genetics. J Pediatr Genet 2018; 07: 001-008
- 290 Desai U, Rosen H, Mulliken JB. et al Audiologic Findings in Pfeiffer Syndrome. J Craniofac Surg 2010; 21: 1411-1418
- 291 Tarailo-Graovac M, Sinclair G, Stockler-Ipsiroglu S. et al The genotypic and phenotypic spectrum of PIGA deficiency. Orphanet J Rare Dis 2015; 10
- 292 Knowles MR, Zariwala M, Leigh M. Primary Ciliary Dyskinesia. Clin Chest Med 2016; 37: 449-461
- 293 Chang Q, Wang J, Li Q. et al Virally mediated Kcnq1 gene replacement therapy in the immature scala media restores hearing in a mouse model of human Jervell and Lange-Nielsen deafness syndrome. EMBO Mol Med 2015; 7: 1077-1086
- 294 Zhang Q, Liang D, Yue Y. et al Axenfeld-Rieger syndrome-associated mutants of the transcription factor FOXC1 abnormally regulate NKX2-5 in model zebrafish embryos. J Biol Chem 2020; 2: jbc.RA120.013287
- 295 Wakeling EL, Brioude F, Lokulo-Sodipe O. et al Diagnosis and management of Silver–Russell syndrome: first international consensus statement. Nat Rev Endocrinol 2017; 13: 105-124
- 296 Hoischen A, Van Bon BWM, Gilissen C. et al De novo mutations of SETBP1 cause Schinzel-Giedion syndrome. Nat Genet 2010; 42: 483-485
- 297 Tsang SH, Aycinena ARP, Sharma T. Ciliopathy: Senior-Løken Syndrome 2018; 175-178
- 298 Kaur A, Dhir SK, Goyal G. et al Senior loken syndrome. J Clin Diagnostic Res 2016; 10: SD03-SD04
- 299 Abdelhadi O, Iancu D, Stanescu H. et al EAST syndrome: Clinical, pathophysiological, and genetic aspects of mutations in KCNJ10. Rare Dis (Austin, Tex) 2016; 4: e1195043
- 300 Gaudreau P, Zizak V, Gallagher TQ. The otolaryngologic manifestations of Sotos syndrome. Int J Pediatr Otorhinolaryngol 2013; 77: 1861-1863
- 301 Boczek NJ, Kruisselbrink T, Cousin MA. et al Multigenerational pedigree with STAR syndrome: A novel FAM58A variant and expansion of the phenotype. Am J Med Genet Part A 2017; 173: 1328-1333
- 302 Smith SD, Kelley PM, Kenyon JB. et al Tietz syndrome (hypopigmentation/deafness) caused by mutation of MITF. J Med Genet 2000; 37: 446-448
- 303 Liang Y, Shen D, Cai W. Two coding single nucleotide polymorphisms in the SALL1 gene in Townes-Brocks syndrome: a case report and review of the literature. J Pediatr Surg 2008; 43: 391-393
- 304 Géléoc GGS, El-Amraoui A. Disease mechanisms and gene therapy for Usher syndrome. Hear Res 2020; 394: 107932
- 305 Hedberg-Oldfors C, Darin N, Oldfors A. Muscle pathology in Vici syndrome-A case study with a novel mutation in EPG5 and a summary of the literature. Neuromuscul Disord 2017; 27: 771-776
- 306 Song J, Feng Y, Acke FR. et al Hearing loss in Waardenburg syndrome: a systematic review. Clin Genet 2016; 89: 416-425
- 307 Kontorinis G, Lenarz T, Giourgas A. et al Outcomes and Special Considerations of Cochlear Implantation in Waardenburg Syndrome. Otol Neurotol 2011; 32: 951-955
- 308 La Morgia C, Maresca A, Amore G. et al Calcium mishandling in absence of primary mitochondrial dysfunction drives cellular pathology in Wolfram Syndrome. Sci Rep 2020; 10: 1-15
- 309 Samara A, Rahn R, Neyman O. et al Developmental hypomyelination in Wolfram syndrome: New insights from neuroimaging and gene expression analyses. Orphanet J Rare Dis 2019; 14: 1-14
- 310 Elumalai V, Pasrija D. Zellweger Syndrome. 2020 Im Internet http://www.ncbi.nlm.nih.gov/pubmed/32809511
- 311 Sclafani AP, DeDio RM, Hendrix RA. The Chiari-I malformation. Ear Nose Throat J 1991; 70: 208-212 Im Internet http://www.ncbi.nlm.nih.gov/pubmed/1874153
- 312 Barsottini OG, Pedroso JL, Martins CR. et al Deafness and Vestibulopathy in Cerebellar Diseases: a Practical Approach. Cerebellum 2019; 18: 1011-1016
- 313 Bokhari MR, Samanta D, Bokhari SRA. Canavan Disease. 2020 Im Internet http://www.ncbi.nlm.nih.gov/pubmed/28613566
- 314 Roscoe RB, Elliott C, Zarros A. et al Non-genetic therapeutic approaches to Canavan disease. J Neurol Sci 2016; 366: 116-124
- 315 Ishiyama G, Lopez I, Baloh RW. et al Canavan’s leukodystrophy is associated with defects in cochlear neurodevelopment and deafness. Neurology 2003; 60: 1702-1704
- 316 Demos MK, Van Karnebeek CDM, Ross CJD. et al A novel recurrent mutation in ATP1A3 causes CAPOS syndrome. Orphanet J Rare Dis 2014; 9: 1-9
- 317 Stenshorne I, Rasmussen M, Salvanos P. et al Fever-related ataxia: A case report of CAPOS syndrome. Cerebellum and Ataxias 2019; 6: 3-7
- 318 Rosewich H, Weise D, Ohlenbusch A. et al Phenotypic overlap of alternating hemiplegia of childhood and CAPOS syndrome. Neurology 2014; 83: 861-863
- 319 Choi JE, Seok JM, Ahn J. et al Hidden hearing loss in patients with Charcot-Marie-Tooth disease type 1A. Sci Rep 2018; 8: 10335
- 320 Park JG, Tischfield MA, Nugent AA. et al Loss of MAFB Function in Humans and Mice Causes Duane Syndrome, Aberrant Extraocular Muscle Innervation, and Inner-Ear Defects. Am J Hum Genet 2016; 98: 1220-1227
- 321 Weir FW, Kreicher KL, Hatch JL. et al Audiologic and otologic phenotype in children with Duane’s Retraction Syndrome: A rare ophthalmologic disorder. Int J Pediatr Otorhinolaryngol 2016; 89: 154-158
- 322 Auer-Grumbach M, Bode H, Pieber TR. et al Mutations at Ser331 in the HSN type I gene SPTLC1 are associated with a distinct syndromic phenotype. Eur J Med Genet 2013; 56: 266-269
- 323 Hojo K, Kawamata T, Tanaka C. et al Inflammatory glial activation in the brain of a patient with hereditary sensory neuropathy type 1 with deafness and dementia. Neurosci Lett 2004; 367: 340-343
- 324 Tyler GK, Martin TPC, Baguley DM. Systematic review of outcome of cochlear implantation in superficial siderosis. Otol Neurotol 2012; 33: 976-982
- 325 Iversen MM, Rabbitt RD. Biomechanics of Third Window Syndrome. Front Neurol 2020; 11.
- 326 Marinelli JP, Lohse CM, Carlson ML. Incidence of Intralabyrinthine Schwannoma. Otol Neurotol 2018; 39: 1191-1194
- 327 Plontke SK, Rahne T, Pfister M. et al Intralabyrinthine schwannomas: Surgical management and hearing rehabilitation with cochlear implants. HNO 2017; 65: 136-148
- 328 Plontke SK, Fröhlich L, Wagner L. et al How Much Cochlea Do You Need for Cochlear Implantation?. Otol Neurotol 2020; 41: 694-703
- 329 Orsini A, Valetto A, Bertini V. et al The best evidence for progressive myoclonic epilepsy: A pathway to precision therapy. Seizure 2019; 71: 247-257