RSS-Feed abonnieren
DOI: 10.1055/a-1368-7072
One-Shot Deprotonative Metalation/Transmetalation/Polymerization of Halothiophenes Catalyzed by Nickel Complex for Polythiophene Synthesis
This work was partly supported by Kakenhi B (JP19182273) by MEXT, Cooperative Research Program of ‘Network Joint Research Center for Materials and Devices’, and Kobe University for the promotion of international collaboration researches.
![](https://www.thieme-connect.de/media/synthesis/202117/lookinside/thumbnails/ss-2020-f0653-st_10-1055_a-1368-7072-1.jpg)
Abstract
Effect of divalent metals was studied in the cross-coupling polymerization of thiophenes leading to head-to-tail-type poly-3-hexylthiophene. Deprotonation of the C–H bond at the 5-position of 2-halo-3-hexylthiophene by LDA followed by metal exchange was carried out in one pot and following addition of nickel catalyst underwent polymerization. One-shot reaction involving deprotonation/transmetalation/ cross coupling polymerization was also examined with manganese(II) chloride and nickel(II) catalyst.
Key words
deprotonative metalation - poly(3-hexylthiophene) - group II metals - nickel catalyst - one-shot reactionSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1368-7072.
- Supporting Information
Publikationsverlauf
Eingereicht: 25. Dezember 2020
Angenommen nach Revision: 21. Januar 2021
Accepted Manuscript online:
21. Januar 2021
Artikel online veröffentlicht:
15. Februar 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Sirringhaus H, Tessler N, Friend RH. Science 1998; 280: 1741
- 1b Cho KY, Kim HJ, Do XH, Seo JY, Hwang SS, Choi DH, Baek KY. Compos. Sci. Technol. 2019; 174: 149
- 1c Osaka I, McCullough RD. Acc. Chem. Res. 2008; 41: 1202
- 1d Bao Z, Dodabalapur A, Lovinger AJ. Appl. Phys. Lett. 1996; 69: 4108
- 2a Okamoto K, Luscombe CK. Polym. Chem. 2011; 2: 2424
- 2b Yokozawa T, Ohta Y. Chem. Rev. 2016; 116: 1950
- 2c Amna B, Siddiqi HM, Hassan A, Ozturk T. RSC Adv. 2020; 10: 4322
- 3a Mori A. J. Synth. Org. Chem. Jpn. 2011; 69: 1202
- 3b Shibuya Y, Mori A. Chem. Eur. J. 2020; 26: 6976
- 3c Mori A. Bull. Chem. Soc. Jpn. 2020; 93: 1200
- 4a Loewe RS, Khersonsky SM, McCullough RD. Adv. Mater. 1999; 11: 250
- 4b Yokoyama A, Miyakoshi R, Yokozawa T. Macromolecules 2004; 37: 1169
- 4c Kiriy A, Senkovskyy V, Sommer M. Macromol. Chem. Rapid Commun. 2011; 32: 1503
- 4d Bronstein HA, Luscombe CK. J. Am. Chem. Soc. 2009; 131: 12894
- 4e Ye S, Foster SM, Pollit AA, Cheng S, Seferos DS. Chem. Sci. 2019; 10: 2075
- 5a Tamba S, Tanaka S, Okubo Y, Meguro H, Okamoto S, Mori A. Chem. Lett. 2011; 40: 398
- 5b Tamba S, Mitsuda S, Tanaka F, Sugie A, Mori A. Organometallics 2012; 31: 2263
- 5c Tamba S, Fuji K, Meguro H, Okamoto S, Tendo T, Komobuchi R, Sugie A, Nishino T, Mori A. Chem. Lett. 2013; 42: 281
- 5d Murakami K, Tanaka S, Mori A. Polym. Chem. 2015; 6: 6573
- 5e Fujita K, Sumino Y, Ide K, Tamba S, Shono K, Shen J, Nishino T, Mori A, Yasuda T. Macromolecules 2016; 49: 1259
- 5f Ogura T, Kubota C, Suzuki T, Okano K, Tanaka N, Matsumoto T, Nishino T, Mori A, Okita T, Funahashi M. Chem. Lett. 2019; 48: 611
- 5g Shibuya Y, Nakagawa N, Miyagawa N, Suzuki T, Okano K, Mori A. Angew. Chem. Int. Ed. 2019; 58: 9547
- 5h Mori A, Kubota C, Fujita K, Hayashi M, Ogura T, Suzuki T, Okano K, Funahashi M, Horie M. Macromolecules 2020; 53: 1171
- 6a Iraqi A, Barker GW. J. Mater. Chem. 1998; 8: 25
- 6b Guillerez S, Bidan G. Synth. Met. 1998; 93: 123
- 6c Wang Q, Takita R, Kikuzaki Y, Ozawa F. J. Am. Chem. Soc. 2010; 132: 11420
- 6d Bonillo B, Swager TM. J. Am. Chem. Soc. 2012; 134: 18916
- 7a Chen TA, Rieke RD. J. Am. Chem. Soc. 1992; 114: 10087
- 7b Chen TA, Wu XM, Rieke RD. J. Am. Chem. Soc. 1995; 117: 233
- 8a McCullough RD, Lowe RD. J. Chem. Soc., Chem. Commun. 1992; 70
- 8b Higashihara T, Goto E, Ueda M. ACS Macro Lett. 2012; 1: 167
- 9a Fuji K, Tamba S, Shono K, Sugie A, Mori A. J. Am. Chem. Soc. 2013; 135: 12208
- 9b Shono K, Sumino Y, Tanaka S, Tamba S, Mori A. Org. Chem. Front. 2014; 1: 678
- 9c Westerhausen M. Coord. Chem. Rev. 2008; 252: 1516
- 10a Frischmuth A, Fernández M, Barl NM, Achrainer F, Zipse H, Berionni G, Mayr H, Karaghiosoff K, Knochel P. Angew. Chem. Int. Ed. 2014; 53: 7928
- 10b Brikci-Nigassa N, Bentabed-Ababsa G, Erb W, Mongin F. Synthesis 2018; 50: 3615
- 11 SEC analysis suggested the formation of a small amount of high-molecular-weight of polymer, which has also been observed in the Murahashi coupling polymerization (ref. 9). See also Supporting Information.
- 12a Tsubogo T, Yamashita Y, Kobayashi S. Chem. Eur. J. 2012; 18: 13624
- 12b Wilson AS. S, Hill MS, Mahon MF, Dinoi C, Maron L. Science 2017; 358: 1168
- 13 Miyoshi N, Kimura S, Kubo S, Ohmura SD, Ueno M. Asian J. Org. Chem. 2020; 9: 1660
- 14 Yanagisawa A, Habaue S, Yasue K, Yamamoto H. J. Am. Chem. Soc. 1994; 116: 6130
- 15a Hojo M, Harada H, Ito H, Hosomi A. J. Am. Chem. Soc. 1997; 119: 5459
- 15b Oshima K. J. Organomet. Chem. 1999; 575: 1
- 15c Concellón JM, Rodríguez-Solla H, Del Amo V. Chem. Eur. J. 2008; 14: 10184
- 15d See also: Rieke R. Patent WO 2007146074 A1, 2007
- 16 Tamba S, Shono K, Sugie A, Mori A. J. Am. Chem. Soc. 2011; 133: 9700
- 17 Hayashi Y. Chem. Sci. 2016; 7: 866
- 18 Inoue R, Yamaguchi M, Murakami Y, Okano K, Mori A. ACS Omega 2018; 3: 12703