Synthesis 2021; 53(14): 2494-2502 DOI: 10.1055/a-1399-3823
N -Acylbenzotriazoles as Proficient Substrates for an Easy Access to Ureas, Acylureas, Carbamates, and Thiocarbamates via Curtius Rearrangement Using Diphenylphosphoryl Azide (DPPA) as Azide Donor
Mangal S. Yadav
,
Sumt K. Singh
,
Anand K. Agrahari
,
Anoop S. Singh
,
The authors sincerely thank the Science and Engineering Research Board (SERB), New Delhi (Grant No. EMR/2016/001123) and the Council of Scientific and Industrial Research (CSIR), New Delhi [Scheme No. 02(0345)/19/EMR-II] for funding. M.S.Y. and A.K.A. acknowledge CSIR for fellowships (SRF), while S.K.S. thanks the University Grants Commission (UGC) for a JRF.
This manuscript is dedicated to the late Prof. Alan R. Katritzky for his notable contributions to benzotriazole chemistry.
Abstract
A diverse range of ureas, N -acylureas, carbamates, and thiocarbamates has been synthesized in good to excellent yields by reacting N -acylbenzotriazoles individually with amines or amides or phenols or thiols in the presence of diphenylphosphoryl azide (DPPA) as a suitable azide donor in anhydrous toluene at 110 °C for 3–4 hours. In this route, DPPA was found to be a good alternative to trimethylsilyl azide and sodium azide for the azide donor in Curtius degradation. The high reaction yields, one-pot and metal-free conditions, straightforward nature, easy handling, use of readily available reagents, and in many cases avoidance of column chromatography are the notable features of the devised protocol.
Key words
N -acylbenzotriazoles -
N -acylureas -
benzotriazoles -
Curtius rearrangement -
diphenylphosphoryl azide -
carbamates -
thiocarbamates -
ureas
Supporting Information
Supporting information for this article is available online at https://doi.org/10.1055/a-1399-3823. Included are copies of 1H and 13C NMR spectra for all developed ureas and their derivatives, carbamates, and thiocarbamates.
Supporting Information
Publication History
Received: 13 January 2021
Accepted after revision: 24 February 2021
Accepted Manuscript online: 24 February 2021
Article published online: 16 March 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG Rüdigerstraße 14, 70469 Stuttgart, Germany
References
1a
Katritzky AR,
Kirichenko N,
Rogovoy BV.
ARKIVOC 2003; (viii): 8
1b
Ghosh AK,
Brindisi M.
J. Med. Chem. 2020; 63: 2751
1c
Barker TJ,
Duncan KK,
Otrubova K,
Boger DL.
ACS Med. Chem. Lett. 2013; 4: 985
1d
Sidda JD,
Song L,
Poon V,
Al-Bassam M,
Lazos O,
Buttner MJ,
Challis GL,
Corre C.
Chem. Sci. 2014; 5: 86
1e
Schwartz BD,
Skinner-Adams TS,
Andrews KT,
Coster MJ,
Edstein MD,
MacKenzie D,
Charman SA,
Koltun M,
Blundell S,
Campbell A,
Pouwer RH,
Quinn RJ,
Beattie KD,
Healy PC,
Davis RA.
Org. Biomol. Chem. 2015; 13: 1558
1f
Abad A,
Agullo C,
Cuñat AC,
Jiménez R,
Vilanova C.
J. Agric. Food Chem. 2004; 52: 4675
1g
Vishnyakova TP,
Golubeva IA,
Glebova EV.
Russ. Chem. Rev. 1985; 54: 249
2a
Bogolubsky AV,
Moroz YS,
Mykhailiuk PK,
Granat DS,
Pipko SE,
Konovets AI,
Doroschuk R,
Tolmachev A.
ACS Comb. Sci. 2014; 16: 303
2b
Khan KM,
Saeed S,
Ali M,
Gohar M,
Zahid J,
Khan A,
Perveen S,
Choudhary MI.
Bioorg. Med. Chem. 2009; 17: 2447
3a
Escudier B,
Eisen T,
Stadler WM,
Szczylik C,
Oudard S,
Siebels M,
Negrier S,
Chevreau C,
Solska E,
Desai AA,
Rolland F,
Demkow T,
Hutson TE,
Gore M,
Freeman S,
Schwartz B,
Shan M,
Simantov R,
Bukowski RM.
N. Engl. J. Med. 2007; 356: 125
3b
Kang Q,
Gong J,
Wang M,
Wang Q,
Chen F,
Cheng K.-W.
J. Agric. Food Chem. 2019; 67: 13939
4
Steward HW,
Quinone NQ,
Lee EG,
Denton JJ.
J. Org. Chem. 1953; 18: 1478
5a
Hendrick CE,
Wang Q.
J. Org. Chem. 2015; 80: 1059
5b
Hernandez AG,
Grooms GM,
El-Alfy AT,
Stec J.
Synthesis 2017; 49: 2163
6
Camp AA,
Batres MA,
Williams WC,
Lehmann DM.
Environ. Entomol. 2020; 49: 203
7
Morales SI,
Martínez AM,
Figueroa JI,
Campos-García J,
Gómez-Tagle A,
Lobit P,
Smagghe G,
Pineda S.
Chemosphere 2019; 235: 76
8
Kumar H,
Singh K.
J. Pharmacogn. Phytochem. 2020; 9: 2208
9
Bisane KD,
Shinde BD,
Saxena SP,
Patil P.
Pestic. Res. J. 2019; 31: 48
10
Klabunde T,
Wendt KU,
Kadereit D,
Brachvogel V,
Burger H.-J,
Herling AW,
Oikonomakos NG,
Kosmopoulou MN,
Schmoll D,
Sarubbi E,
von Roedern E,
Schönafinger K,
Defossa E.
J. Med. Chem. 2005; 48: 6178
11a
Lemoucheux L,
Rouden J,
Ibazizene M,
Sobrio F,
Lasne M.-C.
J. Org. Chem. 2003; 68: 7289
11b
Majer P,
Randad RS.
J. Org. Chem. 1994; 59: 1937
11c
Scialdone MA,
Shuey SW,
Soper P,
Hamuro Y,
Burns DM.
J. Org. Chem. 1998; 63: 4802
11d
McReynolds MD,
Sprott KT,
Hanson PR.
Org. Lett. 2002; 4: 4673
12
Bora P,
Bez G.
Chem. Commun. 2018; 54: 8363
13
Nagaraju N,
Kuriakose G.
Green Chem. 2002; 4: 269
14a
Wang L,
Wang H,
Li G,
Min S,
Xiang F,
Liu S,
Zheng W.
Adv. Synth. Catal. 2018; 360: 4585
14b
Li Z,
Xu S,
Huang B,
Yuan C,
Chang W,
Fu B,
Jiao L,
Wang P,
Zhang Z.
J. Org. Chem. 2019; 84: 9497
15
Bjerglund K,
Lindhardt AT,
Skrydstrup T.
J. Org. Chem. 2012; 77: 3793
16a
Singh AS,
Kumar D,
Mishra N,
Tiwari VK.
RSC Adv. 2016; 6: 84512
16b
Singh AS,
Agrahari AK,
Singh SK,
Yadav MS,
Tiwari VK.
Synthesis 2019; 51: 3443
16c
Singh AS,
Agrahari AK,
Singh SK,
Yadav MS,
Tiwari VK.
SYNFORM 2019; 10: A152
17a
Batey RA,
Yoshina-Ishii C,
Taylor SD,
Santhakumar V.
Tetrahedron Lett. 1999; 40: 2669
17b
Isobe T,
Ishikawa T.
J. Org. Chem. 1999; 64: 5832
17c
Wood TF,
Gardner JH.
J. Am. Chem. Soc. 1941; 63: 2741
17d
Bowden K,
Chana RS.
J. Chem. Soc., Perkin Trans. 2 1990; 2163
17e
Mizuno T,
Nishiguchi I,
Okushi T,
Hirashima T.
Tetrahedron Lett. 1991; 32: 6867
17f
Chin-Hsien W.
Synthesis 1981; 622
18a
Weijlard J,
Tishler M.
J. Am. Chem. Soc. 1951; 73: 1497
18b
Riemschneider R,
Kühl A.
Monatsh. Chem. 1953; 84: 1238
19a
Tilles H.
J. Am. Chem. Soc. 1959; 81: 714
19b
Reddy TI,
Bhawal BM,
Rajappa S.
Tetrahedron Lett. 1992; 33: 2857
20
Bao P,
Wang L,
Yue H,
Shao Y,
Wen J,
Yang D,
Zhao X,
Wang H,
Wei W.
J. Org. Chem. 2019; 84: 2976
21a
Bao W.-H,
He M,
Wang J.-T,
Peng X,
Sung M,
Tang Z,
Jiang S,
Cao Z,
He W.-M.
J. Org. Chem. 2019; 84: 6065
21b
Mizuno T,
Nishiguchi I,
Sonada N.
Tetrahedron 1994; 50: 5669
22a
Katritzky AR,
Suzuki K,
Wang Z.
Synlett 2005; 1656
22b
Wet-osot S,
Duangkamol C,
Phakhodee W,
Pattarawarapan M.
ACS Comb. Sci. 2016; 18: 279
22c
Katritzky AR,
Rachwal S.
Chem. Rev. 2010; 110: 1564
23
Duangkamol C,
Wangngae S,
Pattarawarapan M,
Phakhodee W.
Eur. J. Org. Chem. 2014; 7109
24a
Katritzky AR,
Zhang Y,
Singh SK.
Synthesis 2003; 2795
24b
Singh AS,
Agrahari AK,
Mishra N,
Singh M,
Tiwari VK.
Synthesis 2019; 51: 470
25a
Singh AS,
Agrahari AK,
Singh M,
Mishra N,
Tiwari VK.
ARKIVOC 2017; (v): 80
25b
Singh M,
Singh AS,
Mishra N,
Agrahari AK,
Tiwari VK.
Synthesis 2019; 51: 2183
26a
Tiwari VK,
Mishra BB,
Mishra KB,
Mishra N,
Singh AS,
Chen X.
Chem. Rev. 2016; 116: 3086
26b
Agrahari AK,
Singh AK,
Singh AS,
Singh M,
Maji M,
Yadav S,
Rajkhowa S,
Prakash P,
Tiwari VK.
New J. Chem. 2020; 44: 19300
27
Yadav MS,
Singh AS,
Agrahari AK,
Mishra N,
Tiwari VK.
ACS Omega 2019; 4: 6681
28
Singh AK,
Chawla R,
Yadav LD. S.
Tetrahedron Lett. 2013; 54: 5099
29
Atanasova IA,
Petrov JS,
Mollov NM.
Synthesis 1987; 734
30
Yang G,
Chen Z,
Zhang H.
Green Chem. 2003; 5: 441
31
Lebel H,
Leogane O.
Org. Lett. 2006; 8: 5717
32
Du C,
Chen Y.
Chin. J. Chem. 2020; 38: 1057
33
Chamni S,
Zhang J,
Zou H.
Green Chem. Lett. Rev. 2020; 13: 246
34
Gavade S,
Balaskar R,
Mane M,
Pabrekar PN,
Mane D.
Synth. Commun. 2012; 42: 1704
35
Alder T,
Bonjoch J,
Clayden J,
Font-Bardia M,
Pickworth M,
Solans X,
Sole D,
Vallverdu L.
Org. Biomol. Chem. 2005; 3: 3173
36
Kima H.-K,
Lee A.
Org. Biomol. Chem. 2016; 14: 7345
37
Isobe T.
J. Org. Chem. 1999; 64: 5832