Synlett 2021; 32(09): 930-934
DOI: 10.1055/a-1468-5725
letter

Brønsted Acid Catalyzed Cyclization of Inert N-Substituted Pyrroles to Benzo[f]pyrrolo[1,2-a][1,4]diazepines

Zeng Gao
a   State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, P. R. of China
b   University of Chinese Academy of Sciences, Beijing 100049, P. R. of China
,
a   State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, P. R. of China
,
Huameng Yang
a   State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, P. R. of China
,
Jinlong Zhang
a   State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, P. R. of China
,
Gaoxi Jiang
a   State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, P. R. of China
› Author Affiliations
Financial support from the National Natural Science Foundation of China (21602231) and the Natural Science Foundation of Jiangsu Province (BK20191197 and BK20181373) is gratefully acknowledged.


Abstract

Two approaches involving intramolecular and intermolecular cyclization, respectively, have been developed for the direct and practical construction of a series of important benzo[f]pyrrolo[1,2-a][1,4]azepines by using Brønsted acid catalysts. Upon catalysis by TsOH, the intramolecular dehydroxylation/ring closure of 3-hydroxy-2-[2-(1H-pyrrol-1-yl)benzyl]isoindolin-1-ones provided various racemic benzo[f]pyrrolo[1,2-a][1,4]azepines in high yields. Furthermore, enantioenriched benzo[f]pyrrolo[1,2-a][1,4]azepines were also obtained by chiral phosphoric acid catalyzed intermolecular addition of [2-(1H-pyrrol-1-yl)phenyl]methanamines to 2-formylbenzoates under mild conditions.

Supporting Information



Publication History

Received: 14 December 2020

Accepted after revision: 27 March 2021

Accepted Manuscript online:
27 March 2021

Article published online:
16 April 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany