Subscribe to RSS
DOI: 10.1055/a-1468-6231
Visible-Light-Mediated Synthesis of Rutaecarpine Alkaloids through C–N Cross-Coupling Reaction
This work was supported by the Natural Science Foundation of Guangxi Province (2020GXNSFAA297251), the National Natural Science Foundation of China (22001049) and the Key Laboratory of Electrochemical and Magnetochemical Function Materials.
Abstract
A visible-light-initiated cross-dehydrogenative-coupling amination is described, featuring metal- and photocatalyst-free, at room temperature, and using air as an oxidant. The reaction provides a facile approach for the synthesis of rutaecarpine and its derivatives. The substrates with electron-withdrawing groups give higher yields than those with electron-donating groups, but the substituent position has a negligible influence on the yield. Using binaphthyl-diyl hydrogen phosphate and dibenzyl phosphate as catalysts both deliver satisfying yields. This straightforward light-driven strategy might be applicable to the synthesis of quinazolinone derivatives.
Key words
cross-dehydrogenation coupling - C–H amination - photochemistry - air oxidant - rutaecarpine - quinazolinone alkaloidsSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1468-6231.
- Supporting Information
Publication History
Received: 28 February 2021
Accepted after revision: 27 March 2021
Accepted Manuscript online:
27 March 2021
Article published online:
13 April 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Horton DA, Bourne GT, Smythe ML. Chem. Rev. 2003; 103: 893
- 1b Khan I, Ibrar A, Ahmed W, Saeed A. Eur. J. Med. Chem. 2015; 90: 124
- 2a Mhaske SB, Argade NP. Tetrahedron 2006; 62: 9787
- 2b Kobayashi S, Ueno M, Suzuki R, Ishitani H, Kim H, Wataya Y. J. Org. Chem. 1999; 64: 6833
- 2c Johne S. Prog. Chem. Org. Nat. Prod. 1984; 46: 159
- 3a Venkatesh R, Ramaiah MJ, Gaikwad HK, Janardhan S, Bantu R, Nagarapu L, Sastry GN, Ganesh AR, Bhadra M. Eur. J. Med. Chem. 2015; 94: 87
- 3b Schepetkin IA, Khlebnikov AI, Potapov AS, Kovrizhina AR, Matveevskaya VV, Belyanin ML, Atochin DN, Zanoza SO, Gaidarzhy NM, Lyakhov SA, Kirpotina LN, Quinn MT. Eur. J. Med. Chem. 2019; 161: 179
- 3c Wang M.-X, Lin L, Chen Y.-D, Zhong Y.-P, Lin Y.-X, Li P, Tian X, Han B, Xie Z.-Y, Liao Q.-F. Pharmacol. Res. 2020; 159: 104978
- 3d Surbala L, Singh CB, Devi RV, Singh OJ. J. Pharmacol. Sci. 2020; 143: 307
- 3e Ma J, Chen L, Fan J, Cao W, Zeng G, Wang Y, Li Y, Zhou Y, Deng X. Eur. J. Med. Chem. 2019; 168: 146
- 3f Shang X.-F, Morris-Natschke SL, Liu Y.-Q, Guo X, Xu X.-S, Goto M, Li J.-C, Yang G.-Z, Lee K.-H. Med. Res. Rev. 2018; 38: 775
- 4 Asahina Y, Kashiwaki K. J. Pharm. Soc. Jpn. 1915; 405: 1273
- 5 Lee SH, Son J.-K, Jeong BS, Jeong T.-C, Chang HW, Lee E.-S, Jahng Y. Molecules 2008; 13: 272
- 6 Nie L.-F, Wang S.-S, Cao J.-G, Liu F.-Z, Xiamuxi H, Aisa HA, Huang G.-Z. J. Asian Nat. Prod. Res. 2020; 22: 69
- 7 Nie X.-Q, Chen H.-H, Zhang J.-Y, Zhang Y.-J, Yang J.-W, Pan H.-J, Song W.-X, Muran F, He YQ, Bian K. Acta Pharmacol. Sin. 2016; 37: 483
- 8 Liu X.-Q, Jin J, Li Z, Jiang L, Dong Y.-H, Cai Y.-T, Wu M.-F, Wang J.-N, Ma T.-T, Wen J.-G, Liu M.-M, Li J, Wu YG, Meng X.-M. Biochem. Pharmacol. 2020; 180: 114132
- 9 Surbala L, Singh CB, Devi RV, Singh OJ. J. Pharmacol. Sci. 2020; 143: 307
- 10 Wu M, Ma J, Ji L, Wang M, Han J, Li Z. Eur. J. Med. Chem. 2019; 177: 198
- 11 Gurung AB, Pamay P, Tripathy D, Biswas K, Chatterjee A, Joshi SR, Bhattacharjee A. J. Cell. Biochem. 2019; 120: 13598
- 12a Mhaske SB, Argade NP. Tetrahedron 2006; 62: 9787
- 12b Son J.-K, Chang HW, Jahng Y. Molecules 2015; 20: 10800
- 13a Asahina Y, Manske RH. F, Robinson R. J. Chem. Soc. 1927; 1708
- 13b Asahina Y, Irie T, Ohta T. J. Pharm. Soc. Jpn. 1927; 47: 545
- 13c Huang G, Roos D, Stadtmüller P, Decker M. Tetrahedron Lett. 2014; 55: 3607
- 13d Yang Y, Zhu C, Zhang M, Huang S, Lin J, Pan X, Su W. Chem. Commun. 2016; 52: 12869
- 13e Liang L.-N, An R, Huang T, Xu M, Hao X.-J, Pan W.-D, Liu S. Tetrahedron Lett. 2015; 56: 2466
- 13f Clemenceau A, Wang Q, Zhu J. Org. Lett. 2017; 19: 4872
- 13g Li J, Wang Z.-B, Xu Y, Lu X.-C, Zhu S.-R, Liu L. Chem. Commun. 2019; 55: 12072
- 13h Xie L, Lu C, Jing D, Ou X, Zheng K. Eur. J. Org. Chem. 2019; 3649
- 13i Chen X, Xia F, Zhao Y, Ma J, Ma Y, Zhang D, Yang L, Sun P. Chin. J. Chem. 2020; 38: 1239
- 14 Chavan SP, Sivappa R. Tetrahedron Lett. 2004; 45: 997
- 15 Li Q.-Y, Cheng S.-Y, Tang H.-T, Pan Y.-M. Green Chem. 2019; 21: 5517
- 16 Chen X, Zhang X, Lu S, Sun P. RSC Adv. 2020; 10: 44382
- 17a Zhao Y, Xia W. Chem. Soc. Rev. 2018; 47: 2591
- 17b Yang Y, Zhang D, Vessally E. Top. Curr. Chem. 2020; 378: 37
- 18a Luis ET, Iranmanesh H, Beves JE. Polyhedron 2019; 160: 1
- 18b Gupta PK, Mishra L. Nanoscale Adv. 2020; 2: 1774
- 19a Dumur F. Catalysts 2019; 9: 736
- 19b Nacsa ED, MacMillan DW. C. J. Am. Chem. Soc. 2018; 140: 3322
- 20a Fan X.-Z, Rong J.-W, Wu H.-L, Zhou Q, Deng H.-P, Tan JD, Xue C.-W, Wu L.-Z, Tao H.-R, Wu J. Angew. Chem. Int. Ed. 2018; 57: 8514
- 20b Barzano G, Mao R, Garreau M, Waser J, Hu X. Org. Lett. 2020; 22: 5412
- 21a Shon J.-H, Teets TS. ACS Energy Lett. 2019; 4: 558
- 21b Shon JH, Teets TS. Comments Inorg. Chem. 2020; 40: 53
- 22a Pandey G, Laha R. Angew. Chem. Int. Ed. 2015; 54: 14875
- 22b Pandey G, Laha R, Singh D. J. Org. Chem. 2016; 81: 7161
- 22c Pandey G, Laha R, Mondal PK. Chem. Commun. 2019; 55: 9689
- 23 Jing D, Lu C, Chen Z, Jin S, Xie L, Meng Z, Su Z, Zheng K. Angew. Chem. Int. Ed. 2019; 58: 14666
- 24a Kong X.-F, Zhan F, He G.-X, Pan C.-X, Gu C.-X, Lu K, Mo D.-L, Su G.-F. J. Org. Chem. 2018; 83: 2006
- 24b Kong X.-F, Guo X.-Y, Gu Z.-Y, Wei L.-S, Liu L.-L, Mo D.-L, Pan C.-X, Su G.-F. Org. Chem. Front. 2020; 7: 2055
- 25a Hayyan M, Hashim MA, AlNashef IM. Chem. Rev. 2016; 116: 3029
- 25b Kumar G, Pradhan S, Chatterjee I. Chem. Asian J. 2020; 15: 651
- 25c Boess E, Schmitz C, Klussmann M. J. Am. Chem. Soc. 2012; 134: 5317
- 26 Mass spectra were obtained by using a LCMS-9030 quadrupole mass spectrometer (SHIMADZU, Japan) equipped with an APCI source operated in positive/negative ion mode and an Agilent SB C18 column (150 mm × 2.1 mm, I.D., particle size 5 μm) with ultraviolet detection at 344 nm. The mobile phase was acetonitrile–water (51:49, v/v) at a flow rate of 0.2 mL/min at room temperature.
- 27 Typical Procedures A glass tube (10 mL) was charged with 2a (0.022 g, 0.075 mmol), (R)-BPA (0.0025 g, 0.0075 mmol), and 1,4-dioxane (0.5 mL), then closed under air. The reaction was put on the photoreactor which is cooled by 25 °C water, irradiated for 12 h. After the reaction was completed (monitored by TLC), the solvent was removed under reduced pressure, and the crude product was purified by flash chromatography to give 1a in 70% yield; mp 259–261 °C. 1H NMR (500 MHz, CDCl3): δ = 9.51 (s, 1 H), 8.33–8.31 (m, 1 H), 7.70 (t, J = 7.5 Hz, 1 H), 7.66–7.61 (m, 2 H), 7.42 (t, J = 7.5 Hz, 1 H), 7.36 (d, J = 5.0 Hz, 1 H), 7.31 (t, J = 7.5 Hz, 1 H), 7.17 (t, J = 7.5 Hz, 1 H), 4.59 (t, J = 5.0 Hz, 2 H), 3.23 (t, J = 5.0 Hz, 2 H). 13C NMR (126 MHz, CDCl3): δ = 161.62, 147.50, 145.03, 138.31, 134.36, 127.26, 127.18, 126.60, 126.23, 125.64, 125.59, 121.18, 120.63, 120.10, 118.39, 112.10, 41.14, 19.68. According to the procedures reported previously, 2a was readily prepared form 2,3,4,9-tetrahydro-1H-pyrido[3,4-b]-indole (3) and 2-aminobenzoic acid in the presence of HATU and Et3N,23 and tryptamine reacted with paraformaldehyde in the mixed solvent of acetic acid and methanol to give 3.28
- 28 Cochrane EJ, Hassall LA, Coldham I. J. Org. Chem. 2015; 80: 5964