Synlett 2022; 33(02): 161-165 DOI: 10.1055/a-1470-6050
letter
EuCheMS Organic Division Young Investigator Workshop
Highly Fluorinated Trianglimine Macrocycles: A Supramolecular Organic Framework
Tom Kunde‡
a
Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
,
Tobias Pausch‡
a
Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
,
Guido J. Reiss
b
Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
,
a
Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
› Author Affiliations This work was supported by the Fonds der Chemischen Industrie by a Kekulé Fellowship (T.K.), by the North Rhine-Westphalian Academy of Sciences, Humanities and the Arts (B.M.S.), and the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) (SCHM 3101/5-1).
Abstract
A novel highly fluorinated dialdehyde was prepared by a two-stage synthesis. This reactive building block for dynamic imine chemistry was used in a condensation reaction to generate the first extensively fluorinated trianglimine. An analysis of the material properties and, especially, the crystal structure of the [3+3] macrocycle revealed a supramolecular organic framework with tubular porous channels. The use of fluorinated ligands to generate hydrophobic electron-deficient channel-like pores is an important addition to the ever-expanding field of supramolecular networks and to trianglimine chemistry in general.
Key words
supramolecular organic frameworks -
trianglimines -
porous materials -
fluorinated ligands -
crystal structure
Supporting Information
Supporting information for this article is available online at https://doi.org/10.1055/a-1470-6050.
Supporting Information
Publication History
Received: 18 March 2021
Accepted after revision: 30 March 2021
Accepted Manuscript online: 30 March 2021
Article published online: 20 April 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG Rüdigerstraße 14, 70469 Stuttgart, Germany
References and Notes
1a
Rosi NL,
Eckert J,
Eddaoudi M,
Vodak DT,
Kim J,
O’Keeffe M,
Yaghi OM.
Science 2003; 300: 1127
1b
Chen T.-H,
Popov I,
Chuang Y.-C,
Chen Y.-S,
Miljanić O. Š.
Chem. Commun. 2015; 51: 6340
1c
Küsgens P,
Zgaverdea A,
Fritz H,
Siegle S,
Kaskel S.
J. Am. Ceram. Soc. 2010; 93: 2476
For reviews, see:
1d
Yuan S,
Feng L,
Wang K,
Pang J,
Bosch M,
Lollar C,
Sun Y,
Qin J,
Yang X,
Zhang P,
Wang Q,
Zou L,
Zhang Y,
Zhang L,
Fang Y,
Li J,
Zhou H.-C.
Adv. Mater (Weinheim, Ger.) 2018; 30: 1704303
1e
Furukawa H,
Cordova KE,
O’Keeffe M,
Yaghi OM.
Science 2013; 341: 1230444
1f
James SL.
Chem. Soc. Rev. 2003; 32: 276
2a
Vyas VS,
Haase F,
Stegbauer L,
Savasci G,
Podjaski F,
Ochsenfeld C,
Lotsch BV.
Nat. Commun. 2015; 6: 8508
2b
Yang H,
Du Y,
Wan S,
Trahan GD,
Jin Y,
Zhang W.
Chem. Sci. 2015; 6: 4049
2c
Chen X,
Addicoat M,
Irle S,
Nagai A,
Jiang D.
J. Am. Chem. Soc. 2013; 135: 546
2d
Doonan CJ,
Tranchemontagne DJ,
Glover TG,
Hunt JR,
Yaghi OM.
Nat. Chem. 2010; 2: 235
2e
Uribe-Romo FJ,
Hunt JR,
Furukawa H,
Klöck C,
O’Keeffe M,
Yaghi OM.
J. Am. Chem. Soc. 2009; 131: 4570
For reviews, see:
2f
Beuerle F,
Gole B.
Angew. Chem. Int. Ed. 2018; 57: 4850
2g
Ding S.-Y,
Wang W.
Chem. Soc. Rev. 2013; 42: 548
3a
Yang W,
Greenaway A,
Lin X,
Matsuda R,
Blake AJ,
Wilson C,
Lewis W,
Hubberstey P,
Kitagawa S,
Champness NR,
Schröder M.
J. Am. Chem. Soc. 2010; 132: 14457
3b
Tan L,
Li H,
Tao Y,
Zhang SX,
Wang B,
Yang Y.
Adv. Mater (Weinheim, Ger.) 2014; 26: 7027
3c
Lü J,
Perez-Krap C,
Suyetin M,
Alsmail NH,
Yan Y,
Yang S,
Lewis W,
Bichoutskaia E,
Tang CC,
Blake AJ,
Cao R,
Schröder M.
J. Am. Chem. Soc. 2014; 136: 12828
3d
Pfeffermann M,
Dong R,
Graf R,
Zajaczkowski W,
Gorelik T,
Pisula W,
Narita A,
Müllen K,
Feng X.
J. Am. Chem. Soc. 2015; 137: 14525
3e
Chen T.-H,
Kaveevivitchai W,
Jacobson AJ,
Miljanić O. Š.
Chem. Commun. 2015; 51: 14096
3f
Huang Y.-G,
Shiota Y,
Wu M.-Y,
Su S.-Q,
Yao Z.-S,
Kang S,
Kanegawa S,
Li G.-L,
Wu S.-Q,
Kamachi T,
Yoshizawa K,
Ariga K,
Hong M.-C,
Sato O.
Nat. Commun. 2016; 7: 11564
3g
Zhang G,
Li B,
Zhou Y,
Chen X,
Li B,
Lu Z.-Y,
Wu L.
Nat. Commun. 2020; 11: 425
4a
Yang H,
Du Y,
Wan S,
Trahan GD,
Jin Y,
Zhang W.
Chem. Sci. 2015; 6: 4049
4b
Hisaki I,
Nakagawa S,
Tohnai N,
Miyata M.
Angew. Chem. Int. Ed. 2015; 54: 3008
4c
Qi Z,
Schalley CA.
Acc. Chem. Res. 2014; 47: 2222
4d
Reuter R,
Wegner HA.
Chem. Commun. 2013; 49: 146
4e
Huang Z,
Kang S.-K,
Banno M,
Yamaguchi T,
Lee D,
Seok C,
Yashima E,
Lee M.
Science 2012; 337: 1521
4f
Venkataraman D,
Lee S,
Zhang J,
Moore JS.
Nature 1994; 371: 591
5a
Kuhnert N,
Straßnig C,
Lopez-Periago AM.
Tetrahedron: Asymmetry 2002; 13: 123
5b
Kuhnert N,
Lopez-Periago AM.
Tetrahedron Lett. 2002; 43: 3329
5c
Kuhnert N,
Burzlaff N,
Patel C,
Lopez-Periago A.
Org. Biomol. Chem. 2005; 3: 1911
5d
Nour HF,
Matei MF,
Bassil BS,
Kortz U,
Kuhnert N.
Org. Biomol. Chem. 2011; 9: 3258
5e
Wang Z,
Nour HF,
Roch LM,
Guo M,
Li W,
Baldridge KK,
Sue AC.-H,
Olson MA.
J. Org. Chem. 2017; 82: 2472
5f
Szymkowiak J,
Warżajtis B,
Rychlewska U,
Kwit M.
CrystEngComm 2018; 20: 5200
5g
Dey A,
Chand S,
Alimi LO,
Ghosh M,
Cavallo L,
Khashab NM.
J. Am. Chem. Soc. 2020; 142: 15823
6a
Gawroński J,
Gawrońska K,
Grajewski J,
Kwit M,
Plutecka A,
Rychlewska U.
Chem. Eur. J. 2006; 12: 1807
6b
Kuhnert N,
Göbel D,
Thiele C,
Renault B,
Tang B.
Tetrahedron Lett. 2006; 47: 6915
6c
Nour HF,
Matei MF,
Bassil BS,
Kortz U,
Kuhnert N.
Org. Biomol. Chem. 2011; 9: 3258
6d
Janiak A,
Bardziński M,
Gawroński J,
Rychlewska U.
Cryst. Growth Des. 2016; 16: 2779
6e
Chaix A,
Mouchaham G,
Shkurenko A,
Hoang P,
Moosa B,
Bhatt PM,
Adil K,
Salama KN,
Eddaoudi M,
Khashab NM.
J. Am. Chem. Soc. 2018; 140: 14571
6f
Huang T,
Moosa BA,
Hoang P,
Liu J,
Chisca S,
Zhang G,
AlYami M,
Khashab NM,
Nunes SP.
Nat. Commun. 2020; 11: 5882
6g
Dey A,
Chand S,
Maity B,
Bhatt PM,
Ghosh M,
Cavallo L,
Eddaoudi M,
Khashab NM.
J. Am. Chem. Soc. 2021; 143: 4090
7a
Yang Z,
Wang S,
Zhang Z,
Guo W,
Jie K,
Hashim MI,
Miljanić O. Š,
Jiang D.-e,
Popovs I,
Dai S.
J. Mater. Chem. A 2019; 7: 17277
7b
Cadiau A,
Belmabkhout Y,
Adil K,
Bhatt PM,
Pillai RS,
Shkurenko A,
Martineau-Corcos C,
Maurin G,
Eddaoudi M.
Science 2017; 356: 731
7c
Chen T.-H,
Popov I,
Kaveevivitchai W,
Chuang Y.-C,
Chen Y.-S,
Jacobson AJ,
Miljanić O. Š.
Angew. Chem. Int. Ed. 2015; 54: 13902
7d
Chen T.-H,
Popov I,
Zenasni O,
Daugulis O,
Miljanić O. Š.
Chem. Commun. 2013; 49: 6846
7e
Babudri F,
Farinola GM,
Naso F,
Ragni R.
Chem. Commun. 2007; 1003
For an excellent review, see:
7f
Zhang Z,
Miljanić O. Š.
Org. Mater. 2019; 1: 19
8
Kaneko T.
JP 2006273766, 2006
9
Kolomeitsev AA,
Seifert FU,
Röschenthaler G.-V.
J. Fluorine Chem. 1995; 71: 47
10
Hérault D,
Nguyen DH,
Nuel D,
Buono G.
Chem. Soc. Rev. 2015; 44: 2508
11
Supramolecular Organic Framework RRF24
A solution of DACH (91.4 mg, 800 μmol, 1.0 equiv) in MeCN (15 mL) was added dropwise to a stirred solution of dialdehyde 2 (283 mg, 800 μmol, 1.0 equiv) in MeCN (10 mL) over 1 h. The resulting solution was stirred overnight at r.t., and the precipitate that formed was collected by filtration and washed with MeCN (2 × 5 mL) to give a colorless powder; yield: 195 mg (150 μmol, 56%); mp 306.7 °C.
FTIR (ATR): 2933.7 (w), 2862.4 (w), 1643.4 (w), 1469.8 (s), 1384.9 (w)1278.8 (m), 1263.4 (w), 1089.8 (w), 1033.9 (w), 987.6 (m), 927.8 (m), 862.2 (w), 723.3 (s) cm–1 . 1 H NMR (300 MHz, CDCl3 ): δ = 8.40 (s, 2 H, –CHA N), 3.84–3.22 (m, 2 H, CH–N=), 2.12–1.72 (m, 6 H, –C(HB )2 – and C–HC ), 1.75–1.34 (m, 2 H, C–HC ). 13 C{1 H} NMR (126 MHz, CDCl3 ): δ = 149.7 (Ar–CHA O), 145.6 (dd, J = 257.3, 11.8 Hz, CAr –FA ), 143.7 (dd, J = 254.5, 15.5 Hz, CAr –FB ), 117.9 (t, J = 12.7 Hz, CAr –CHA O), 108.1 (t, J = 16.2 Hz, Ar–CAr ), 76.0 (–C–N=), 32.4 (–C–HB ), 24.3 (–C–HB ). 19 F NMR (282 MHz, CDCl3 ): δ –137.77 (dd, J = 16.8, 9.6 Hz, 4 F, Ar–FA ), –142.38 to –143.31 (m, 4 F, Ar–FB ). HRMS (ESI): m/z [M + H]+ Calcd for C60 H37 F24 N6 = 1297.2691; found: 1297.2688.
12a
Dittrich B,
Bergmann J,
Roloff P,
Reiss GJ.
Crystals 2018; 8: 213
12b
Reiß GJ.
Acta Crystallogr., Sect. E 2002; 58: m47
13a
Kunde T,
Nieland E,
Schröder HV,
Schalley CA,
Schmidt BM.
Chem. Commun. 2020; 56: 4761
13b
Schmidt BM,
Meyer AK,
Lentz D.
CrystEngComm 2017; 19: 1328