RSS-Feed abonnieren
DOI: 10.1055/a-1478-7061
Recent Advances in the Use of Sodium Dispersion for Organic Synthesis
We thank RIKEN and KOBELCO ECO-Solutions Co., Ltd. for financial support.
Abstract
This short review describes the recent emergence of organosodium chemistry, motivated by the requirements of modern synthetic chemistry for sustainability, and powered by the use of sodium dispersion, a form of sodium that is commercially available, easy to handle, and has a large active surface area. We present recent methods for the preparation of organosodium compounds using sodium dispersion, and their applications to synthesis. Sodium amides and phosphides are also briefly discussed.
1 Introduction
2 Sodium Dispersion
3 Preparation of Organosodium Compounds
3.1 Two-Electron Reduction of Aryl Halides
3.2 Halogen–Sodium Exchange
3.3 Directed Metalation
3.4 Cleavage of C–C and C–Heteroatom Bonds
4 Synthetic Applications
4.1 Reduction in Combination with a Proton Source
4.1.1 Bouveault–Blanc Reduction
4.1.2 Birch Reduction
4.1.3 Reductive Deuteration
4.1.4 Chemoselective Cleavage of Amides and Nitriles
4.2 Difunctionalization of Alkenes and Alkynes
5 Sodium Amides and Phosphides
6 Conclusions and Outlook
Publikationsverlauf
Eingereicht: 29. März 2021
Angenommen nach Revision: 09. April 2021
Accepted Manuscript online:
09. April 2021
Artikel online veröffentlicht:
19. Mai 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a The Chemistry of Organolithium Compounds: R–Li, Patai Series: The Chemistry of Functional Groups. Rappoport Z, Marek I. John Wiley & Sons; Chichester: 2004
- 1b Lithium Compounds in Organic Synthesis: From Fundamentals to Applications. Luisi R, Capriati V. Wiley-VCH; Weinheim: 2014
- 1c Rathman TL, Schwindeman JA. Org. Process Res. Dev. 2014; 18: 1192
- 1d Wietelmann U, Klett J. Z. Anorg. Allg. Chem. 2018; 644: 194
- 2a Yabuuchi N, Kubota K, Dahbi M, Komaba S. Chem. Rev. 2014; 114: 11636
- 2b Kubota K, Dahbi M, Hosaka T, Kumakura S, Komaba S. Chem. Rec. 2018; 18: 459
- 2c Komaba S. Chem. Lett. 2020; 49: 1507
- 3 Vesborg PC. K, Jaramillo TF. RSC Adv. 2012; 2: 7933
- 4a Seyferth D. Organometallics 2006; 25: 2
- 4b Seyferth D. Organometallics 2009; 28: 2
- 4c Schlosser M. Organometallics in Synthesis: A Manual, 2nd ed. Wiley-VCH; Weinheim: 2002
- 4d Wurtz A. Ann. Chim. Phys. Paris 1855; 44: 275
- 4e Wanklyn JA. Justus Liebigs Ann. Chem. 1858; 108: 67
- 5 Woltornist RA, Ma Y, Algera RF, Zhou Y, Zhang Z, Collum DB. Synthesis 2020; 52: 1478
- 6a Joannis A. Compt. Rend. 1891; 112: 392
- 6b McGee JM. J. Am. Chem. Soc. 1921; 43: 586
- 6c Vaughn TH, Vogt RR, Nieuwland JA. J. Am. Chem. Soc. 1934; 56: 2120
- 6d Vaughn TH, Hennion GF, Vogt RR, Nieuwland JA. J. Org. Chem. 1937; 2: 1
- 7a Birch AJ. J. Chem. Soc. 1944; 430
- 7b Birch AJ. J. Chem. Soc. 1945; 809
- 7c Birch AJ. J. Chem. Soc. 1946; 593
- 7d Birch AJ. J. Chem. Soc. 1947; 102
- 7e Birch AJ. J. Chem. Soc. 1947; 1642
- 7f Birch AJ. J. Chem. Soc. 1949; 2531
- 8a Hansley VL. Ind. Eng. Chem. 1951; 43: 1759
- 8b Nobis JF, Moormeier LF, Robinson RE. Adv. Chem. Ser. 1959; 23: 63
- 9 Morton Α. Α, Fallwell FJr. J. Am. Chem. Soc. 1937; 59: 2387
- 10 Nobis JF, Moormeier LF. Ind. Eng. Chem. 1954; 46: 539
- 11 Bockmühl M, Ehrhart G. US Patent 2012372, 1935
- 12 Gilman H, Wright GF. J. Am. Chem. Soc. 1933; 55: 2893
- 13 Asako S, Nakajima H, Takai K. Nat. Catal. 2019; 2: 297
- 14 The same sodium dispersion is commercially available from Tokyo Chemical Industry Co., Ltd. [code: D5792] and FUJIFILM Wako Pure Chemical Corporation [code: 638-46321].
- 15a Murahashi S, Yamamura M, Yanagisawa K, Mita N, Kondo K. J. Org. Chem. 1979; 44: 2408
- 15b Murahashi S.-I. J. Organomet. Chem. 2002; 653: 27
- 15c Giannerini M, Fañanás-Mastral M, Feringa BL. Nat. Chem. 2013; 5: 667
- 15d Pinxterhuis EB, Giannerini M, Hornillos V, Feringa BL. Nat. Commun. 2016; 7: 11698
- 16a Marvel CS, Hager FD, Coffman DD. J. Am. Chem. Soc. 1927; 49: 2323
- 16b Wittig G, Pockels U, Dröge H. Ber. Dtsch. Chem. Ges. 1938; 71: 1903
- 16c Gilman H, Langham W, Jacoby AL. J. Am. Chem. Soc. 1939; 61: 106
- 17a Gilman H, Jones RG. J. Am. Chem. Soc. 1941; 63: 1441
- 17b Gilman H, Moore FW, Baine O. J. Am. Chem. Soc. 1941; 63: 2479
- 17c Lidstone AG, Morris IA. Chem. Ind. (London) 1958; 560
- 18 Asako S, Takahashi I, Nakajima H, Ilies L, Takai K. Commun. Chem. 2021;
- 19a Beak P, Meyers AI. Acc. Chem. Res. 1986; 19: 356
- 19b Gschwend HW, Rodriguez HR. Org. React. (N. Y.) 1979; 26: 1
- 19c Snieckus V. Chem. Rev. 1990; 90: 879
- 20 Asako S, Kodera M, Nakajima H, Takai K. Adv. Synth. Catal. 2019; 361: 3120
- 21a Ma Y, Algera RF, Collum DB. J. Org. Chem. 2016; 81: 11312
- 21b Ma Y, Woltornist RA, Algera RF, Collum DB. J. Org. Chem. 2019; 84: 9051
- 22a Harenberg JH, Weidmann N, Karaghiosoff K, Knochel P. Angew. Chem. Int. Ed. 2021; 60: 731
- 22b Weidmann N, Ketels M, Knochel P. Angew. Chem. Int. Ed. 2018; 57: 10748
- 23a Wilkinson G. Org. Synth. 1956; 36: 31
- 23b Panda TK, Gamer MT, Roesky PW. Organometallics 2003; 22: 877
- 24a Gissot A, Becht J.-M, Desmurs JR, Pevere V, Wagner A, Mioskowski C. Angew. Chem. Int. Ed. 2002; 41: 340
- 24b Becht J.-M, Gissot A, Wagner A, Mioskowski C. Tetrahedron Lett. 2004; 45: 9331
- 25 Wang S, Kaga A, Yorimitsu H. Synlett 2021; 32: 219
- 26a Azzena U, Denurra T, Fenude E, Melloni G, Rassu G. Synthesis 1989; 28
- 26b Azzena U, Denurra T, Melloni G, Piroddi AM. J. Org. Chem. 1990; 55: 5386
- 26c Azzena U, Dettori G, Idini MV, Pisano L, Sechi G. Tetrahedron 2003; 59: 7961
- 26d Maercker A. Angew. Chem. Int. Ed. 1987; 26: 972
- 27a Letsinger RL, Traynham JG. J. Am. Chem. Soc. 1948; 70: 3342
- 27b Gaudemar M. Tetrahedron 1976; 32: 1689
- 28a Azzena U, Pittalis M, Dettori G, Madeddu S, Azara E. Tetrahedron Lett. 2006; 47: 1055
- 28b Azzena U. Aust. J. Chem. 2017; 70: 647
- 29a Bouveault L, Blanc G. Compt. Rend. 1903; 136: 1676
- 29b Bouveault L, Blanc G. Compt. Rend. 1903; 137: 60
- 29c Bouveault L, Blanc G. Compt. Rend. 1903; 137: 328
- 29d Bouveault L, Blanc G. Bull. Soc. Chim. Fr. 1904; 31: 666
- 29e Bouveault L, Blanc G. Bull. Soc. Chim. Fr. 1904; 31: 1206
- 29f Bouveault L, Blanc G. Bull. Soc. Chim. Fr. 1904; 31: 1213
- 30a Bodnar BS, Vogt PF. J. Org. Chem. 2009; 74: 2598
- 30b Carraro M, Pisano L, Azzena U. Synthesis 2017; 49: 1931
- 31 An J, Work DN, Kenyon C, Procter DJ. J. Org. Chem. 2014; 79: 6743
- 32a Birch AJ, Smith H. Q. Rev. Chem. Soc. 1958; 12: 17
- 32b Akhrem AA, Reshetova IG, Titov YA. Birch Reduction of Aromatic Compounds. Springer; USA: 1972
- 32c Rabideau PW. Tetrahedron 1989; 45: 1579
- 32d Rabideau PW, Marcinow Z. Org. React. 1992; 42: 1
- 32e Birch AJ. Pure Appl. Chem. 1996; 68: 553
- 32f Schultz AG. Chem. Commun. 1999; 1263
- 32g Subba Rao GS. R. Pure Appl. Chem. 2003; 75: 1443
- 33 Zimmerman HE. Acc. Chem. Res. 2012; 45: 164
- 34a Nandi P, Dye JL, Jackson JE. J. Org. Chem. 2009; 74: 5790
- 34b Costanzo MJ, Patel MN, Petersen KA, Vogt PF. Tetrahedron Lett. 2009; 50: 5463
- 34c Abourahma H, Bradley L, Lareau NM, Reesbeck M. J. Chem. Educ. 2014; 91: 443
- 35 Lei P, Ding Y, Zhang X, Adijiang A, Li H, Ling Y, An J. Org. Lett. 2018; 20: 3439
- 36a Simmons EM, Hartwig JF. Angew. Chem. Int. Ed. 2012; 51: 3066
- 36b Gant TG. J. Med. Chem. 2014; 57: 3595
- 36c Atzrodt J, Derdau V, Kerr WJ, Reid M. Angew. Chem. Int. Ed. 2018; 57: 1758
- 37 Han M, Ma X, Yao S, Ding Y, Yan Z, Adijiang A, Wu Y, Li H, Zhang Y, Lei P, Ling Y, An J. J. Org. Chem. 2017; 82: 1285
- 38 Li H, Zhang B, Dong Y, Liu T, Zhang Y, Nie H, Yang R, Ma X, Ling Y, An J. Tetrahedron Lett. 2017; 58: 2757
- 39 Han M, Ding Y, Yan Y, Li H, Luo S, Adijiang A, Ling Y, An J. Org. Lett. 2018; 20: 3010
- 40 Ding Y, Luo S, Adijiang A, Zhao H, An J. J. Org. Chem. 2018; 83: 12269
- 41a Barrett AG. M. Reduction of Carboxylic Acid Derivatives to Alcohols, Ethers and Amines. In Comprehensive Organic Synthesis, Vol. 8. Trost BM, Fleming I. Pergamon Press; Oxford: 1991: 235-258
- 41b Moody HM, Kaptein B, Broxterman QB, Boesten WH. J, Kamphuis J. Tetrahedron Lett. 1994; 35: 1777
- 42a Szostak M, Spain M, Eberhart AJ, Procter DJ. J. Am. Chem. Soc. 2014; 136: 2268
- 42b Huq SR, Shi S, Diao R, Szostak M. J. Org. Chem. 2017; 82: 6528
- 43 Zhang B, Li H, Ding Y, Yan Y, An J. J. Org. Chem. 2018; 83: 6006
- 44 Li H, Lai Z, Adizing A, Zhao H, An J. Molecules 2019; 24: 459
- 45 Ding Y, Luo S, Ma L, An J. J. Org. Chem. 2019; 84: 15827
- 46 Schlenk W, Appenrodt J, Michael A, Thal A. Ber. Dtsch. Chem. Ges. 1914; 47: 473
- 47 Takahashi F, Nogi K, Sasamori T, Yorimitsu H. Org. Lett. 2019; 21: 4739
- 48 Fukazawa M, Takahashi F, Nogi K, Sasamori T, Yorimitsu H. Org. Lett. 2020; 22: 2303
- 49 Ito S, Fukazawa M, Takahashi F, Nogi K, Yorimitsu H. Bull. Chem. Soc. Jpn. 2020; 93: 1171
- 50a Collum DB, McNeil AJ, Ramirez A. Angew. Chem. Int. Ed. 2007; 46: 3002
- 50b Lappert M, Power P, Protchenko A, Seeber A. Metal Amide Chemistry. John Wiley & Sons; Chichester: 2009
- 50c Mulvey RE, Robertson SD. Angew. Chem. Int. Ed. 2013; 52: 11470
- 50d Gentner TX, Mulvey RE. Angew. Chem. Int. Ed. 2021; 60: 9247
- 51a Raynolds S, Levine R. J. Am. Chem. Soc. 1960; 82: 472
- 51b Lochmann L, Pospísǐl J, Lím D. Tetrahedron Lett. 1966; 7: 257
- 51c Lochmann L, Trekoval J. J. Organomet. Chem. 1979; 179: 123
- 51d Barr D, Dawson AJ, Wakefield BJ. J. Chem. Soc., Chem. Commun. 1992; 204
- 51e Andrews PC, Barnett ND. R, Mulvey RE, Clegg W, O’Neil PA, Barr D, Cowton L, Dawson AJ, Wakefield BJ. J. Organomet. Chem. 1996; 518: 85
- 52 Gehrhus B, Hitchcock PH, Kennedy AR, Lappert MF, Mulvey RE, Rodger PJ. A. J. Organomet. Chem. 1999; 587: 88
- 53 Ye J, Zhang J.-Q, Saga Y, Onozawa S.-Y, Kobayashi S, Sato K, Fukaya N, Han L.-B. Organometallics 2020; 39: 2682
- 54 With silica-gel-stabilized sodium [Na2K-SG(I) or Na-SG(I)]: Nandi P, Dye JL, Bentley P, Jackson JE. Org. Lett. 2009; 11: 1689
- 55a Stankevič M, Włodarczyk A, Jaklińska M, Parcheta R, Pietrusiewicz KM. Tetrahedron 2011; 67: 8671
- 55b van Kalkeren HA, Blom AL, Rutjes FP. J. T, Huijbregts MA. J. Green Chem. 2013; 15: 1255
- 56 Zhang J.-Q, Ye J, Huang T, Shinohara H, Fujino H, Han L.-B. Commun. Chem. 2020; 3: 1
- 57a Too PC, Chan GH, Tnay YL, Hirao H, Chiba S. Angew. Chem. Int. Ed. 2016; 55: 3719
- 57b Huang Y, Chan GH, Chiba S. Angew. Chem. Int. Ed. 2017; 56: 6544
- 57c Kaga A, Hayashi H, Hakamata H, Oi M, Uchiyama M, Takita R, Chiba S. Angew. Chem. Int. Ed. 2017; 56: 11807
- 57d Ong DY, Pang JH, Chiba S. J. Synth. Org. Chem., Jpn. 2019; 77: 1060
- 57e Pang JH, Ong DY, Watanabe K, Takita R, Chiba S. Synthesis 2020; 52: 393
- 57f For a sodium dispersion for the preparation of anhydrous solvents, see: Inoue R, Yamaguchi M, Murakami Y, Okano K, Mori A. ACS Omega 2018; 3: 12703
- 58 Wong HN. C. Nat. Catal. 2019; 2: 282
For early examples, see:
Other examples. Metalation and nucleophilic reactions with NaH: