Subscribe to RSS
DOI: 10.1055/a-1478-7061
Recent Advances in the Use of Sodium Dispersion for Organic Synthesis
We thank RIKEN and KOBELCO ECO-Solutions Co., Ltd. for financial support.
![](https://www.thieme-connect.de/media/synthesis/202118/lookinside/thumbnails/ss-2021-f0182-st_10-1055_a-1478-7061-1.jpg)
Abstract
This short review describes the recent emergence of organosodium chemistry, motivated by the requirements of modern synthetic chemistry for sustainability, and powered by the use of sodium dispersion, a form of sodium that is commercially available, easy to handle, and has a large active surface area. We present recent methods for the preparation of organosodium compounds using sodium dispersion, and their applications to synthesis. Sodium amides and phosphides are also briefly discussed.
1 Introduction
2 Sodium Dispersion
3 Preparation of Organosodium Compounds
3.1 Two-Electron Reduction of Aryl Halides
3.2 Halogen–Sodium Exchange
3.3 Directed Metalation
3.4 Cleavage of C–C and C–Heteroatom Bonds
4 Synthetic Applications
4.1 Reduction in Combination with a Proton Source
4.1.1 Bouveault–Blanc Reduction
4.1.2 Birch Reduction
4.1.3 Reductive Deuteration
4.1.4 Chemoselective Cleavage of Amides and Nitriles
4.2 Difunctionalization of Alkenes and Alkynes
5 Sodium Amides and Phosphides
6 Conclusions and Outlook
Publication History
Received: 29 March 2021
Accepted after revision: 09 April 2021
Accepted Manuscript online:
09 April 2021
Article published online:
19 May 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a The Chemistry of Organolithium Compounds: R–Li, Patai Series: The Chemistry of Functional Groups. Rappoport Z, Marek I. John Wiley & Sons; Chichester: 2004
- 1b Lithium Compounds in Organic Synthesis: From Fundamentals to Applications. Luisi R, Capriati V. Wiley-VCH; Weinheim: 2014
- 1c Rathman TL, Schwindeman JA. Org. Process Res. Dev. 2014; 18: 1192
- 1d Wietelmann U, Klett J. Z. Anorg. Allg. Chem. 2018; 644: 194
- 2a Yabuuchi N, Kubota K, Dahbi M, Komaba S. Chem. Rev. 2014; 114: 11636
- 2b Kubota K, Dahbi M, Hosaka T, Kumakura S, Komaba S. Chem. Rec. 2018; 18: 459
- 2c Komaba S. Chem. Lett. 2020; 49: 1507
- 3 Vesborg PC. K, Jaramillo TF. RSC Adv. 2012; 2: 7933
- 4a Seyferth D. Organometallics 2006; 25: 2
- 4b Seyferth D. Organometallics 2009; 28: 2
- 4c Schlosser M. Organometallics in Synthesis: A Manual, 2nd ed. Wiley-VCH; Weinheim: 2002
- 4d Wurtz A. Ann. Chim. Phys. Paris 1855; 44: 275
- 4e Wanklyn JA. Justus Liebigs Ann. Chem. 1858; 108: 67
- 5 Woltornist RA, Ma Y, Algera RF, Zhou Y, Zhang Z, Collum DB. Synthesis 2020; 52: 1478
- 6a Joannis A. Compt. Rend. 1891; 112: 392
- 6b McGee JM. J. Am. Chem. Soc. 1921; 43: 586
- 6c Vaughn TH, Vogt RR, Nieuwland JA. J. Am. Chem. Soc. 1934; 56: 2120
- 6d Vaughn TH, Hennion GF, Vogt RR, Nieuwland JA. J. Org. Chem. 1937; 2: 1
- 7a Birch AJ. J. Chem. Soc. 1944; 430
- 7b Birch AJ. J. Chem. Soc. 1945; 809
- 7c Birch AJ. J. Chem. Soc. 1946; 593
- 7d Birch AJ. J. Chem. Soc. 1947; 102
- 7e Birch AJ. J. Chem. Soc. 1947; 1642
- 7f Birch AJ. J. Chem. Soc. 1949; 2531
- 8a Hansley VL. Ind. Eng. Chem. 1951; 43: 1759
- 8b Nobis JF, Moormeier LF, Robinson RE. Adv. Chem. Ser. 1959; 23: 63
- 9 Morton Α. Α, Fallwell FJr. J. Am. Chem. Soc. 1937; 59: 2387
- 10 Nobis JF, Moormeier LF. Ind. Eng. Chem. 1954; 46: 539
- 11 Bockmühl M, Ehrhart G. US Patent 2012372, 1935
- 12 Gilman H, Wright GF. J. Am. Chem. Soc. 1933; 55: 2893
- 13 Asako S, Nakajima H, Takai K. Nat. Catal. 2019; 2: 297
- 14 The same sodium dispersion is commercially available from Tokyo Chemical Industry Co., Ltd. [code: D5792] and FUJIFILM Wako Pure Chemical Corporation [code: 638-46321].
- 15a Murahashi S, Yamamura M, Yanagisawa K, Mita N, Kondo K. J. Org. Chem. 1979; 44: 2408
- 15b Murahashi S.-I. J. Organomet. Chem. 2002; 653: 27
- 15c Giannerini M, Fañanás-Mastral M, Feringa BL. Nat. Chem. 2013; 5: 667
- 15d Pinxterhuis EB, Giannerini M, Hornillos V, Feringa BL. Nat. Commun. 2016; 7: 11698
- 16a Marvel CS, Hager FD, Coffman DD. J. Am. Chem. Soc. 1927; 49: 2323
- 16b Wittig G, Pockels U, Dröge H. Ber. Dtsch. Chem. Ges. 1938; 71: 1903
- 16c Gilman H, Langham W, Jacoby AL. J. Am. Chem. Soc. 1939; 61: 106
- 17a Gilman H, Jones RG. J. Am. Chem. Soc. 1941; 63: 1441
- 17b Gilman H, Moore FW, Baine O. J. Am. Chem. Soc. 1941; 63: 2479
- 17c Lidstone AG, Morris IA. Chem. Ind. (London) 1958; 560
- 18 Asako S, Takahashi I, Nakajima H, Ilies L, Takai K. Commun. Chem. 2021;
- 19a Beak P, Meyers AI. Acc. Chem. Res. 1986; 19: 356
- 19b Gschwend HW, Rodriguez HR. Org. React. (N. Y.) 1979; 26: 1
- 19c Snieckus V. Chem. Rev. 1990; 90: 879
- 20 Asako S, Kodera M, Nakajima H, Takai K. Adv. Synth. Catal. 2019; 361: 3120
- 21a Ma Y, Algera RF, Collum DB. J. Org. Chem. 2016; 81: 11312
- 21b Ma Y, Woltornist RA, Algera RF, Collum DB. J. Org. Chem. 2019; 84: 9051
- 22a Harenberg JH, Weidmann N, Karaghiosoff K, Knochel P. Angew. Chem. Int. Ed. 2021; 60: 731
- 22b Weidmann N, Ketels M, Knochel P. Angew. Chem. Int. Ed. 2018; 57: 10748
- 23a Wilkinson G. Org. Synth. 1956; 36: 31
- 23b Panda TK, Gamer MT, Roesky PW. Organometallics 2003; 22: 877
- 24a Gissot A, Becht J.-M, Desmurs JR, Pevere V, Wagner A, Mioskowski C. Angew. Chem. Int. Ed. 2002; 41: 340
- 24b Becht J.-M, Gissot A, Wagner A, Mioskowski C. Tetrahedron Lett. 2004; 45: 9331
- 25 Wang S, Kaga A, Yorimitsu H. Synlett 2021; 32: 219
- 26a Azzena U, Denurra T, Fenude E, Melloni G, Rassu G. Synthesis 1989; 28
- 26b Azzena U, Denurra T, Melloni G, Piroddi AM. J. Org. Chem. 1990; 55: 5386
- 26c Azzena U, Dettori G, Idini MV, Pisano L, Sechi G. Tetrahedron 2003; 59: 7961
- 26d Maercker A. Angew. Chem. Int. Ed. 1987; 26: 972
- 27a Letsinger RL, Traynham JG. J. Am. Chem. Soc. 1948; 70: 3342
- 27b Gaudemar M. Tetrahedron 1976; 32: 1689
- 28a Azzena U, Pittalis M, Dettori G, Madeddu S, Azara E. Tetrahedron Lett. 2006; 47: 1055
- 28b Azzena U. Aust. J. Chem. 2017; 70: 647
- 29a Bouveault L, Blanc G. Compt. Rend. 1903; 136: 1676
- 29b Bouveault L, Blanc G. Compt. Rend. 1903; 137: 60
- 29c Bouveault L, Blanc G. Compt. Rend. 1903; 137: 328
- 29d Bouveault L, Blanc G. Bull. Soc. Chim. Fr. 1904; 31: 666
- 29e Bouveault L, Blanc G. Bull. Soc. Chim. Fr. 1904; 31: 1206
- 29f Bouveault L, Blanc G. Bull. Soc. Chim. Fr. 1904; 31: 1213
- 30a Bodnar BS, Vogt PF. J. Org. Chem. 2009; 74: 2598
- 30b Carraro M, Pisano L, Azzena U. Synthesis 2017; 49: 1931
- 31 An J, Work DN, Kenyon C, Procter DJ. J. Org. Chem. 2014; 79: 6743
- 32a Birch AJ, Smith H. Q. Rev. Chem. Soc. 1958; 12: 17
- 32b Akhrem AA, Reshetova IG, Titov YA. Birch Reduction of Aromatic Compounds. Springer; USA: 1972
- 32c Rabideau PW. Tetrahedron 1989; 45: 1579
- 32d Rabideau PW, Marcinow Z. Org. React. 1992; 42: 1
- 32e Birch AJ. Pure Appl. Chem. 1996; 68: 553
- 32f Schultz AG. Chem. Commun. 1999; 1263
- 32g Subba Rao GS. R. Pure Appl. Chem. 2003; 75: 1443
- 33 Zimmerman HE. Acc. Chem. Res. 2012; 45: 164
- 34a Nandi P, Dye JL, Jackson JE. J. Org. Chem. 2009; 74: 5790
- 34b Costanzo MJ, Patel MN, Petersen KA, Vogt PF. Tetrahedron Lett. 2009; 50: 5463
- 34c Abourahma H, Bradley L, Lareau NM, Reesbeck M. J. Chem. Educ. 2014; 91: 443
- 35 Lei P, Ding Y, Zhang X, Adijiang A, Li H, Ling Y, An J. Org. Lett. 2018; 20: 3439
- 36a Simmons EM, Hartwig JF. Angew. Chem. Int. Ed. 2012; 51: 3066
- 36b Gant TG. J. Med. Chem. 2014; 57: 3595
- 36c Atzrodt J, Derdau V, Kerr WJ, Reid M. Angew. Chem. Int. Ed. 2018; 57: 1758
- 37 Han M, Ma X, Yao S, Ding Y, Yan Z, Adijiang A, Wu Y, Li H, Zhang Y, Lei P, Ling Y, An J. J. Org. Chem. 2017; 82: 1285
- 38 Li H, Zhang B, Dong Y, Liu T, Zhang Y, Nie H, Yang R, Ma X, Ling Y, An J. Tetrahedron Lett. 2017; 58: 2757
- 39 Han M, Ding Y, Yan Y, Li H, Luo S, Adijiang A, Ling Y, An J. Org. Lett. 2018; 20: 3010
- 40 Ding Y, Luo S, Adijiang A, Zhao H, An J. J. Org. Chem. 2018; 83: 12269
- 41a Barrett AG. M. Reduction of Carboxylic Acid Derivatives to Alcohols, Ethers and Amines. In Comprehensive Organic Synthesis, Vol. 8. Trost BM, Fleming I. Pergamon Press; Oxford: 1991: 235-258
- 41b Moody HM, Kaptein B, Broxterman QB, Boesten WH. J, Kamphuis J. Tetrahedron Lett. 1994; 35: 1777
- 42a Szostak M, Spain M, Eberhart AJ, Procter DJ. J. Am. Chem. Soc. 2014; 136: 2268
- 42b Huq SR, Shi S, Diao R, Szostak M. J. Org. Chem. 2017; 82: 6528
- 43 Zhang B, Li H, Ding Y, Yan Y, An J. J. Org. Chem. 2018; 83: 6006
- 44 Li H, Lai Z, Adizing A, Zhao H, An J. Molecules 2019; 24: 459
- 45 Ding Y, Luo S, Ma L, An J. J. Org. Chem. 2019; 84: 15827
- 46 Schlenk W, Appenrodt J, Michael A, Thal A. Ber. Dtsch. Chem. Ges. 1914; 47: 473
- 47 Takahashi F, Nogi K, Sasamori T, Yorimitsu H. Org. Lett. 2019; 21: 4739
- 48 Fukazawa M, Takahashi F, Nogi K, Sasamori T, Yorimitsu H. Org. Lett. 2020; 22: 2303
- 49 Ito S, Fukazawa M, Takahashi F, Nogi K, Yorimitsu H. Bull. Chem. Soc. Jpn. 2020; 93: 1171
- 50a Collum DB, McNeil AJ, Ramirez A. Angew. Chem. Int. Ed. 2007; 46: 3002
- 50b Lappert M, Power P, Protchenko A, Seeber A. Metal Amide Chemistry. John Wiley & Sons; Chichester: 2009
- 50c Mulvey RE, Robertson SD. Angew. Chem. Int. Ed. 2013; 52: 11470
- 50d Gentner TX, Mulvey RE. Angew. Chem. Int. Ed. 2021; 60: 9247
- 51a Raynolds S, Levine R. J. Am. Chem. Soc. 1960; 82: 472
- 51b Lochmann L, Pospísǐl J, Lím D. Tetrahedron Lett. 1966; 7: 257
- 51c Lochmann L, Trekoval J. J. Organomet. Chem. 1979; 179: 123
- 51d Barr D, Dawson AJ, Wakefield BJ. J. Chem. Soc., Chem. Commun. 1992; 204
- 51e Andrews PC, Barnett ND. R, Mulvey RE, Clegg W, O’Neil PA, Barr D, Cowton L, Dawson AJ, Wakefield BJ. J. Organomet. Chem. 1996; 518: 85
- 52 Gehrhus B, Hitchcock PH, Kennedy AR, Lappert MF, Mulvey RE, Rodger PJ. A. J. Organomet. Chem. 1999; 587: 88
- 53 Ye J, Zhang J.-Q, Saga Y, Onozawa S.-Y, Kobayashi S, Sato K, Fukaya N, Han L.-B. Organometallics 2020; 39: 2682
- 54 With silica-gel-stabilized sodium [Na2K-SG(I) or Na-SG(I)]: Nandi P, Dye JL, Bentley P, Jackson JE. Org. Lett. 2009; 11: 1689
- 55a Stankevič M, Włodarczyk A, Jaklińska M, Parcheta R, Pietrusiewicz KM. Tetrahedron 2011; 67: 8671
- 55b van Kalkeren HA, Blom AL, Rutjes FP. J. T, Huijbregts MA. J. Green Chem. 2013; 15: 1255
- 56 Zhang J.-Q, Ye J, Huang T, Shinohara H, Fujino H, Han L.-B. Commun. Chem. 2020; 3: 1
- 57a Too PC, Chan GH, Tnay YL, Hirao H, Chiba S. Angew. Chem. Int. Ed. 2016; 55: 3719
- 57b Huang Y, Chan GH, Chiba S. Angew. Chem. Int. Ed. 2017; 56: 6544
- 57c Kaga A, Hayashi H, Hakamata H, Oi M, Uchiyama M, Takita R, Chiba S. Angew. Chem. Int. Ed. 2017; 56: 11807
- 57d Ong DY, Pang JH, Chiba S. J. Synth. Org. Chem., Jpn. 2019; 77: 1060
- 57e Pang JH, Ong DY, Watanabe K, Takita R, Chiba S. Synthesis 2020; 52: 393
- 57f For a sodium dispersion for the preparation of anhydrous solvents, see: Inoue R, Yamaguchi M, Murakami Y, Okano K, Mori A. ACS Omega 2018; 3: 12703
- 58 Wong HN. C. Nat. Catal. 2019; 2: 282
For early examples, see:
Other examples. Metalation and nucleophilic reactions with NaH: