Synthesis 2021; 53(17): 2935-2946
DOI: 10.1055/a-1481-2584
special topic
Bond Activation – in Honor of Prof. Shinji Murai

Advances in Transition-Metal-Catalyzed C–H Bond Oxygenation of Amides

Muniyappa Vijaykumar
a   Organometallic Synthesis and Catalysis Lab, Chemical Engineering Division, CSIR–National Chemical Laboratory (CSIR–NCL), Dr. Homi Bhabha Road, Pune - 411 008, India
b   Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201 002, India
,
a   Organometallic Synthesis and Catalysis Lab, Chemical Engineering Division, CSIR–National Chemical Laboratory (CSIR–NCL), Dr. Homi Bhabha Road, Pune - 411 008, India
b   Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201 002, India
› Author Affiliations
This work was financially supported by the Science and Engineering Research Board (SERB), New Delhi, India (EMR/2016/000989). V.K.M. thanks the Council of Scientific and Industrial Research, New Delhi, India for a research fellowship.


Abstract

C–O bond formation represents a fundamental chemical transformation in organic synthesis to develop valuably oxygenated (hetero)arenes. Particularly, the direct and regioselective C–H bond oxygenation of privileged amides, using a transition metal catalyst and a mild oxygenating source, is a step-economy and attractive approach. During the last decade, considerable progress has been realized in the direct C–H oxygenation of primary, secondary, and tertiary amides. This Short Review compiles the advances in transition-metal-catalyzed oxygenation of C(sp2)–H and C(sp3)–H bonds on various amides with diverse oxygenation sources. The review is categorized into two different major sections: (i) C(sp2)–H oxygenation and (ii) C(sp3)–H oxygenation. Each section is discussed based on the directing group (monodentate and bidentate) attached to the amide derivatives.

1 Introduction

2 C(sp2)–H Oxygenation

2.1 Monodentate Directed

2.2 Bidentate Directed

3 C(sp3)–H Oxygenation

3.1 Monodentate Directed

3.2 Bidentate Directed

4 Conclusion and Outlook



Publication History

Received: 16 March 2021

Accepted after revision: 13 April 2021

Accepted Manuscript online:
13 April 2021

Article published online:
04 May 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Alonso DA, Nájera C, Pastor IM, Yus M. Chem. Eur. J. 2010; 16: 5274
    • 1b Neufeldt SR, Sanford MS. Acc. Chem. Res. 2012; 45: 936
    • 1c Thirunavukkarasu VS, Kozhushkov SI, Ackermann L. Chem. Commun. 2014; 50: 29
    • 1d Liu B, Shi B.-F. Tetrahedron Lett. 2015; 56: 15
    • 1e Moghimi S, Mahdavi M, Shafiee A, Foroumadi A. Eur. J. Org. Chem. 2016; 2016: 3282
    • 1f Iqbal Z, Joshi A, Ranjan De S. Adv. Synth. Catal. 2020; 362: 5301
    • 2a Davies HM. L, Sorensen EJ. Chem. Soc. Rev. 2009; 38: 2981
    • 2b Jun M, Foote C, Lv J, Neal B, Patel A, Nicholls SJ, Grobbee DE, Cass A, Chalmers J, Perkovic V. Lancet 2010; 375: 1875
    • 2c McMurray L, O’Hara F, Gaunt MJ. Chem. Soc. Rev. 2011; 40: 1885
    • 2d Roughley SD, Jordan AM. J. Med. Chem. 2011; 54: 3451
    • 2e Gutekunst WR, Baran PS. Chem. Soc. Rev. 2011; 40: 1976
    • 3a Ley SV, Thomas AW. Angew. Chem. Int. Ed. 2003; 42: 5400
    • 3b Theil F. In Organic Synthesis Highlights V . Schmalz H.-G, Wirth T. Wiley-VCH; Weinheim: 2003: 15
    • 3c Beccalli EM, Broggini G, Martinelli M, Sottocornola S. Chem. Rev. 2007; 107: 5318
    • 3d Hartwig JF. Nature 2008; 455: 314

      For selected examples, see:
    • 4a Dick AR, Sanford MS. Tetrahedron 2006; 62: 2439
    • 4b Wencel-Delord J, Droge T, Liu F, Glorius F. Chem. Soc. Rev. 2011; 40: 4740
    • 4c Gandeepan P, Müller T, Zell D, Cera G, Warratz S, Ackermann L. Chem. Rev. 2019; 119: 2192
    • 5a Engle KM, Mei T.-S, Wasa M, Yu J.-Q. Acc. Chem. Res. 2012; 45: 788
    • 5b De Sarkar S, Liu W, Kozhushkov SI, Ackermann L. Adv. Synth. Catal. 2014; 356: 1461
    • 5c Zhu R.-Y, Farmer ME, Chen Y.-Q, Yu J.-Q. Angew. Chem. Int. Ed. 2016; 55: 10578
    • 5d Das R, Kumar GS, Kapur M. Eur. J. Org. Chem. 2017; 2017: 5439
    • 5e Muthukumar A, Sangeetha S, Sekar G. Org. Biomol. Chem. 2018; 16: 7068
    • 5f Bisht R, Hoque ME, Chattopadhyay B. Angew. Chem. Int. Ed. 2018; 57: 15762
    • 5g Kalepu J, Pilarski LT. Molecules 2019; 24: 830
    • 5h Zheng Q, Liu C.-F, Chen J, Rao G.-W. Adv. Synth. Catal. 2020; 362: 1406
  • 6 Wang G.-W, Yuan T.-T. J. Org. Chem. 2010; 75: 476
  • 7 Anand M, Sunoj RB. Org. Lett. 2011; 13: 4802
    • 8a Padala K, Jeganmohan M. Chem. Eur. J. 2014; 20: 4092

    • For a review see:
    • 8b Pimparkar S, Padala K, Jeganmohan M. Proc. Indian Natl. Sci. Acad. 2014; 80: 999
  • 9 Yang L, Li S, Cai L, Ding Y, Fu L, Cai Z, Ji H, Li G. Org. Lett. 2017; 19: 2746
    • 10a More NY, Padala K, Jeganmohan M. J. Org. Chem. 2017; 82: 12691
    • 10b Padala K, Jeganmohan M. Chem. Commun. 2013; 49: 9651
    • 10c Yu W, Chen J, Gao K, Liu Z, Zhang Y. Org. Lett. 2014; 16: 4870
  • 11 Qiu F.-C, Xie Q, Guan B.-T. Asian J. Org. Chem. 2018; 7: 107
    • 12a Yang F, Ackermann L. Org. Lett. 2013; 15: 718
    • 12b Massignan L, Tan X, Meyer TH, Kuniyil R, Messinis AM, Ackermann L. Angew. Chem. Int. Ed. 2020; 59: 3184
  • 13 Li G, Wan L, Zhang G, Leow D, Spangler J, Yu J.-Q. J. Am. Chem. Soc. 2015; 137: 4391
  • 14 Yadav MR, Rit RK, Shankar M, Sahoo AK. Asian J. Org. Chem. 2015; 4: 846
  • 15 Yadav MR, Rit RK, Sahoo AK. Chem. Eur. J. 2012; 18: 5541
  • 16 Raghuvanshi K, Zell D, Ackermann L. Org. Lett. 2017; 19: 1278
  • 17 Zaitsev VG, Shabashov D, Daugulis O. J. Am. Chem. Soc. 2005; 127: 13154
  • 18 Rouquet G, Chatani N. Angew. Chem. Int. Ed. 2013; 52: 11726
  • 19 Sarkar W, Bhowmik A, Mishra A, Vats TK, Deb I. Adv. Synth. Catal. 2018; 360: 3228
  • 20 Ueno R, Natsui S, Chatani N. Org. Lett. 2018; 20: 1062
  • 21 Liu S.-K, Cui X.-F, Liu X.-X, Ma H.-J, Wei D.-D, Luo X.-L, Huang G.-S. ChemistrySelect 2018; 3: 3989
  • 22 Rajesh N, Sundararaju B. Asian J. Org. Chem. 2018; 7: 1368
  • 23 Wang F, Hu Q, Shu C, Lin Z, Min D, Shi T, Zhang W. Org. Lett. 2017; 19: 3636
  • 24 Liu B, Huang X, Wang X, Ge Z, Li R. Org. Chem. Front. 2015; 2: 797
  • 25 Li G.-J, Pan Y.-L, Liu Y.-L, Xu H.-F, Chen J.-Z. Org. Lett. 2019; 21: 1740
  • 26 Zhang L.-B, Hao X.-Q, Zhang S.-K, Liu Z.-J, Zheng X.-X, Gong J.-F, Niu J.-L, Song M.-P. Angew. Chem. Int. Ed. 2015; 54: 272
  • 27 Sauermann N, Meyer TH, Tian C, Ackermann L. J. Am. Chem. Soc. 2017; 139: 18452
  • 28 Rit RK, Yadav MR, Sahoo AK. Org. Lett. 2014; 16: 968
  • 29 Reddy BV. S, Revathi G, Reddy AS, Yadav JS. Tetrahedron Lett. 2011; 52: 5926
  • 30 Li S, Zhu W, Gao F, Li C, Wang J, Liu H. J. Org. Chem. 2017; 82: 126
    • 31a Li H, Li B.-J, Shi Z.-J. Catal. Sci. Technol. 2011; 1: 191
    • 31b Zhang C, Tang C, Jiao N. Chem. Soc. Rev. 2011; 41: 3464
    • 31c Mishra AA, Subhedar D, Bhanage BM. Chem. Rec. 2018; 19: 1829
    • 31d Tan PW, Seayad J. Tetrahedron Lett. 2019; 60: 151338
  • 32 Zhou L, Lu W. Org. Lett. 2014; 16: 508
  • 33 Reddy BV. S, Reddy LR, Corey EJ. Org. Lett. 2006; 8: 3391
  • 34 Tran LD, Daugulis O. Angew. Chem. Int. Ed. 2012; 51: 5188
  • 35 Yu Q.-Y, Zhong H.-M, Sun W.-W, Zhang S.-J, Cao P, Dong X.-P, Qin H.-B, Liu J.-K, Wu B. Asian J. Org. Chem. 2016; 5: 608
  • 36 Wang F, Li X, Li Z, Zhou S, Zhang W. ACS Omega 2019; 4: 331
  • 37 Chen F.-J, Zhao S, Hu F, Chen K, Zhang Q, Zhang S.-Q, Shi B.-F. Chem. Sci. 2013; 4: 4187
  • 38 Rit RK, Yadav MR, Sahoo AK. Org. Lett. 2012; 14: 3724
  • 39 Wang M, Yang Y, Fan Z, Cheng Z, Zhu W, Zhang A. Chem. Commun. 2015; 51: 3219
  • 40 Wei Q, Ma Y, Dong Y, Liu G. Org. Lett. 2020; 22: 5796
  • 41 Jerhaoui S, Djukic J.-P, Wencel-Delord J, Colobert F. Chem. Eur. J. 2017; 23: 15594