Subscribe to RSS
DOI: 10.1055/a-1482-2486
Nickel-Catalyzed Difunctionalization of Alkynyl Bromides with Thiosulfonates and N-Arylthio Succinimides: A Convenient Synthesis of 1,2-Thiosulfonylethenes and 1,1-Dithioethenes
We thank the Department of Science and Technology, Ministry of Science and Technology, India, Women Scientists Scheme-A (WOS-A) [SR/WOS-A/CS-14/2019] for financial assistance. Our special thanks also go to the Department of Science and Technology-Promotion of University Research and Scientific Excellence (DST-PURSE), Ministry of Science and Technology, India (SR/PURSE Phase 2/32/G) programme for partial funding support. R.J.R. thanks the University Grants Commission (UGC) for a faculty position under the Faculty Recharge Programme. A.H.K. thanks WOS-A for her research fellowship. J.J.K. thanks DST Inspire for his research fellowship.
Abstract
An efficient nickel-catalyzed vicinal thiosulfonylation of 1-bromoalkynes with thiosulfonates in the presence of cesium carbonate is described. An operationally simple and highly regioselective atom transfer radical addition (ATRA) of alkynyl bromides provides a wide range of (E)-1,2-thiosulfonylethenes (α-aryl-β-thioarylvinyl sulfones) in moderate to high yields. The extensive substrate scope of both alkynyl bromides and thiosulfonates is explored with a broad range of functional groups. Indole-derived 1,1-bromoalkenes were also successfully explored in this 1,2-thiosulfonylation process. Moreover, the nickel-catalyzed geminal-dithiolation of alkynyl bromides with N-arylthio succinimides provides 1,1-dithioalkenes in high yields. The present protocol is reliable on gram scale, and a sequential one-pot bromination and thiosulfonylation of phenylacetylene is achieved in a scale-up synthesis. Following control experiments, a plausible mechanism is proposed to rationalize the experimental outcome and the vicinal thiosulfonylation.
Key words
alkynyl bromides - atom transfer radical addition (ATRA) - thiosulfonylation - thiosulfonates - vinyl thiosulfonesSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1482-2486.
- Supporting Information
Publication History
Received: 03 March 2021
Accepted after revision: 14 April 2021
Accepted Manuscript online:
14 April 2021
Article published online:
04 May 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Li Z.-L, Fang G.-C, Gu Q.-S, Liu X.-Y. Chem. Soc. Rev. 2020; 49: 32
- 1b Dhungana RK, Sapkota RR, Niroula D, Giri R. Chem. Sci. 2020; 11: 9757
- 1c Whyte A, Torelli A, Mirabi B, Zhang A, Lautens M. ACS Cat. 2020; 10: 11578
- 1d Yin G, Mu X, Liu G. Acc. Chem. Res. 2016; 49: 2413
- 1e Lan X.-W, Wang N.-X, Xing Y. Eur. J. Org. Chem. 2017; 39: 5821
- 1f Boyarskiy VP, Ryabukhin DS, Bokach NA, Vasilyev AV. Chem. Rev. 2016; 116: 5894
- 1g Ansell MB, Navarro O, Spencer J. Coord. Chem. Rev. 2017; 336: 54
- 1h Sauer GS, Lin S. ACS Catal. 2018; 8: 5175
- 1i Wu X, Wu S, Chen Z. Tetrahedron Lett. 2018; 59: 1328
- 2a Liu W, Kong W. Org. Chem. Front. 2020; 7: 3941
- 2b Qi X, Diao T. ACS Catal. 2020; 10: 8542
- 2c Tu HY, Zhu S, Qing FL, Chu L. Synthesis 2020; 52: 1346
- 2d Ping Y, Kong W. Synthesis 2020; 52: 979
- 2e Zhu C, Yue H, Chu L, Rueping M. Chem. Sci. 2020; 11: 4051
- 3a Pintauer T, Matyjaszewski K. Chem. Soc. Rev. 2008; 37: 1087
- 3b Reiser O. Acc. Chem. Res. 2016; 49: 1990
- 3c Courant T, Masson G. J. Org. Chem. 2016; 81: 6945
- 3d Bag D, Kour H, Sawant SD. Org. Biomol. Chem. 2020; 18: 8278
- 4a Kharasch MS, Jensen EV, Urry WH. Science 1945; 102: 128
- 4b Kharasch MS, Urry WH, Jensen EV. J. Am. Chem. Soc. 1945; 67: 1626
- 4c Kharasch MS, Jensen EV, Urry WH. J. Am. Chem. Soc. 1947; 69: 1100
- 4d Seigal BA, Fajardo C, Snappe ML. J. Am. Chem. Soc. 2005; 127: 16329
- 4e Quebatte L, Solari E, Scopelliti R, Severin K. Organometallics 2005; 24: 1404
- 4f For a review, see: Gossage RA, van de Kuil LA, van Koten G. Acc. Chem. Res. 1998; 31: 423
- 5a Lee C.-F, Basha RS, Badsara SS. Top. Curr. Chem. 2018; 376: 25
- 5b Dunbar KL, Scharf DH, Litomska A, Hertweck C. Chem. Rev. 2017; 117: 5521
- 5c Xu X.-H, Matsuzaki K, Shibata N. Chem. Rev. 2015; 115: 731
- 5d Ni C, Hu M, Hu J. Chem. Rev. 2015; 115: 765
- 5e Organosulfur Chemistry I . In Topics in Current Chemistry, Vol. 204. Page PC. B. Springer-Verlag; Berlin: 1999
- 5f Organosulfur Chemistry II. In Topics in Current Chemistry, Vol. 205. Page PC. B. Springer-Verlag; Berlin: 1999
- 6a Simpkins NS. Sulphones in Organic Synthesis, Vol. 10. Pergamon Press; Oxford: 2013: 1-367
- 6b Trost BM, Kalnmals CA. Chem. Eur. J. 2019; 25: 11193
- 6c Dubbaka SR, Vogel P. Angew. Chem. Int. Ed. 2005; 44: 7674
- 6d Pan F, Shi Z.-J. ACS Catal. 2014; 4: 280
- 7a Wang N, Saidhareddy P, Jiang X. Nat. Prod. Rep. 2020; 37: 246
- 7b Scott KA, Njardarson JT. Top. Curr. Chem. 2018; 376: 5
- 7c Ilardi EA, Vitaku E, Njardarson JT. J. Med. Chem. 2014; 57: 2832
- 7d Haruki H, Pedersen MG, Gorska KI, Pojer F, Johnsson K. Science 2013; 340: 987
- 7e Deming TJ. Bioconjugate Chem. 2017; 28: 691
- 8a Zefirof NS, Zyk NV, Beloglazkina EK, Kutateladze AG. Sulfur Rep. 1993; 14: 223
- 8b Pannecoucke X, Besset T. Org. Biomol. Chem. 2019; 17: 1683
- 8c Mampuys P, McElroy CR, Clark JH, Orru RV. A, Maes BU. W. Adv. Synth. Catal. 2020; 362: 3 ; and references cited therein
- 9a Zhou X, Peng Z, Wang PG, Liu Q, Jia T. Org. Lett. 2021; 23: 1054
- 9b Gadde K, Mampuys P, Guidetti A, Ching HY. V, Herrebout WA, Van Doorslaer S, Tehrani KA, Maes BU. W. ACS Catal. 2020; 10: 8765
- 9c Yuan H, Thirupathi N, Gao H, Tung C.-H, Xu Z. Org. Chem. Front. 2018; 5: 1371
- 9d Li H, Shan C, Tung C.-H, Xu Z. Chem. Sci. 2017; 8: 2610
- 9e Zhao Q, Lu L, Shen Q. Angew. Chem. Int. Ed. 2017; 56: 11575
- 9f Zhu D, Shao X, Hong X, Lu L, Shen Q. Angew. Chem. Int. Ed. 2016; 55: 15807
- 10a Li H, Cheng Z, Tung C.-H, Xu Z. ACS Catal. 2018; 8: 8237
- 10b Song T, Li H, Wei F, Tung C.-H, Xu Z. Tetrahedron Lett. 2019; 60: 916
- 10c Reddy RJ, Kumari AH, Kumar JJ, Nanubolu JB. Adv. Synth. Catal. 2019; 361: 1587
- 10d Peng Z, Yin H, Zhang H, Jia T. Org. Lett. 2020; 22: 5885
- 10e Mao K, Bian M, Dai L, Zhang J, Yu Q, Wang C, Rong L. Org. Lett. 2021; 23: 218
- 11 Wu W, Jiang H. Acc. Chem. Res. 2014; 47: 2483 ; and references therein
- 12a Reddy RJ, Kumari AH, Kumar JJ. Org. Biomol. Chem. 2021; 19: 3087
-
12b
Reddy RJ,
Kumari AH.
RSC Adv. 2021; 11: 9130
- 12c Reddy RJ, Shankar A, Waheed M. SynOpen 2021; 5: 91
- 12d Reddy RJ, Kumar JJ, Kumari AH, Krishna GR. Adv. Synth. Catal. 2020; 362: 1317
- 12e Reddy RJ, Waheed M, Krishna GR. Org. Biomol. Chem. 2020; 18: 3243
- 12f Reddy RJ, Shankar A, Kumari AH. Asian J. Org. Chem. 2019; 8: 2269
- 12g Reddy RJ, Kumar JJ, Kumari AH. Eur. J. Org. Chem. 2019; 3771
- 12h Reddy RJ, Waheed M, Kumar JJ. RSC Adv. 2018; 8: 40446
- 12i Reddy RJ, Shankar A, Waheed M, Nanubolu JB. Tetrahedron Lett. 2018; 59: 2014
- 12j Reddy RJ, Waheed M, Karthik T, Shankar A. New J. Chem. 2018; 42: 980
-
13 CCDC 2061705 (3na) and CCDC 2061706 (4) contain the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
- 14a Meadows DC, Gervay-Hague J. Med. Res. Rev. 2006; 26: 793
- 14b Uttamchandani M, Liu K, Panicker RC, Yao SQ. Chem. Commun. 2007; 1518
- 14c Dunny E, Doherty W, Evans P, Malthouse JP, Nolan D, Knox A. J. Med. Chem. 2013; 56: 6638
-
14d
Fang Y,
Luo Z,
Xu X.
RSC Adv. 2016; 6: 59661
- 15 Barbarella G, Favaretto L, Zanelli A, Gigli G, Mazzeo M, Anni M, Bongini A. Adv. Funct. Mater. 2005; 15: 664
- 16 For the synthesis of 1,1-dithio-1-alkenes, see: Jin H, Yang Y, Kuang C, Yang Q. Synlett 2011; 2886
- 17a Alvim HG. O, da Silva EN. Jr, Neto BA. D. RSC Adv. 2014; 4: 54282
- 17b Cioc RC, Ruijter E, Orru RV. A. Green Chem. 2014; 16: 2958
- 17c Rotstein BH, Zaretsky S, Rai V, Yudin AK. Chem. Rev. 2014; 114: 8323
- 18a Reddy RJ, Ball-Jones MP, Davies PW. Angew. Chem. Int. Ed. 2017; 56: 13310
- 18b Song W, Zheng N, Li M, Dong K, Li J, Ullah K, Zheng Y. Org. Lett. 2018; 20: 6705
- 19a Subramanian H, Moorthy R, Sibi MP. Angew. Chem. Int. Ed. 2014; 53: 13660
- 19b Dénès F, Pichowicz M, Povie G, Renaud P. Chem. Rev. 2014; 114: 2587
- 20a Gilbert BC, Gill B, Sexton MD. J. Chem. Soc., Chem. Commun. 1978; 78
- 20b Chatgilialoglu C, Gilbert BC, Gill B, Sexton MD. J. Chem. Soc., Perkin Trans. 2 1980; 1141
For selected reviews on difunctionalization of carbon–carbon multiple bonds (π-systems), see:
For recent reviews on with Ni-catalyzed difunctionalization, see:
For leading reviews on ARTA, see:
For recent leading articles, see:
For a general and excellent review on thiosulfonates, see:
For the thiosulfonylation of alkenes, see:
For the thiosulfonylation of alkynes and its equivalent, see:
For selected reviews, see:
For thioalkynes, see:
For thiyl radicals in organic synthesis, see:
For homolytic cleavage of thiosulfonates by EPR studies, see: