Subscribe to RSS
DOI: 10.1055/a-1485-5156
Remote C–H Functionalizations by Ruthenium Catalysis
Generous support by the DAAD (fellowship to K.K.), the Alexander von Humboldt foundation (fellowship to R.C.S.) and the DFG (SPP1807 and Gottfried-Wilhelm-Leibniz award to L.A.) is gratefully acknowledged.
Dedicated to Prof. Shinji Murai
Abstract
Synthetic transformations of otherwise inert C–H bonds have emerged as a powerful tool for molecular modifications during the last decades, with broad applications towards pharmaceuticals, material sciences, and crop protection. Consistently, a key challenge in C–H activation chemistry is the full control of site-selectivity. In addition to substrate control through steric hindrance or kinetic acidity of C–H bonds, one important approach for the site-selective C–H transformation of arenes is the use of chelation-assistance through directing groups, therefore leading to proximity-induced ortho-C–H metalation. In contrast, more challenging remote C–H activations at the meta- or para-positions continue to be scarce. Within this review, we demonstrate the distinct character of ruthenium catalysis for remote C–H activations until March 2021, highlighting among others late-stage modifications of bio-relevant molecules. Moreover, we discuss important mechanistic insights by experiments and computation, illustrating the key importance of carboxylate-assisted C–H activation with ruthenium(II) complexes.
1 Introduction
2 Stoichiometric Remote C–H Functionalizations
3 meta-C–H Functionalizations
4 para-C–H Functionalizations
5 meta-/ortho-C–H Difunctionalizations
6 Conclusions
Key words
ruthenium catalysis - meta-selectivity - para-selectivity - remote functionalization - C–H activation - DFT calculation - sequential functionalizationPublication History
Received: 24 March 2021
Accepted after revision: 19 April 2021
Accepted Manuscript online:
19 April 2021
Article published online:
20 May 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Gandeepan P, Müller T, Zell D, Cera G, Warratz S, Ackermann L. Chem. Rev. 2019; 119: 2192
- 1b Hu Y, Zhou B, Wang C. Acc. Chem. Res. 2018; 51: 816
- 1c He J, Wasa M, Chan KS. L, Shao Q, Yu J.-Q. Chem. Rev. 2017; 117: 8754
- 1d Park Y, Kim Y, Chang S. Chem. Rev. 2017; 117: 9247
- 1e Gensch T, Hopkinson MN, Glorius F, Wencel-Delord J. Chem. Soc. Rev. 2016; 45: 2900
- 1f Moselage M, Li J, Ackermann L. ACS Catal. 2016; 6: 498
- 1g Seki M. Org. Process Res. Dev. 2016; 20: 867
- 1h Ackermann L. Org. Process Res. Dev. 2015; 19: 260
- 1i Ackermann L. Acc. Chem. Res. 2014; 47: 281
- 1j Kozhushkov SI, Ackermann L. Chem. Sci. 2013; 4: 886
- 1k Wencel-Delord J, Glorius F. Nat. Chem. 2013; 5: 369
- 1l Arockiam PB, Bruneau C, Dixneuf PH. Chem. Rev. 2012; 112: 5879
- 1m Colby DA, Tsai AS, Bergman RG, Ellman JA. Acc. Chem. Res. 2012; 45: 814
- 1n Neufeldt SR, Sanford MS. Acc. Chem. Res. 2012; 45: 936
- 1o Ackermann L. Chem. Rev. 2011; 111: 1315
- 1p Ackermann L, Vicente R, Kapdi AR. Angew. Chem. Int. Ed. 2009; 48: 9792
- 1q Bergman RG. Nature 2007; 446: 391
- 2a Ghosh M, De Sarkar S. Asian J. Org. Chem. 2018; 7: 1236
- 2b Mihai MT, Genov GR, Phipps RJ. Chem. Soc. Rev. 2018; 47: 149
- 2c Li J, De Sarkar S, Ackermann L. Top. Organomet. Chem. 2016; 55: 217
- 3a Yang T, Kong C, Yang S, Yang Z, Yang S, Ehara M. Chem. Sci. 2020; 11: 113
- 3b Liu L.-Y, Qiao JX, Yeung K.-S, Ewing WR, Yu J.-Q. J. Am. Chem. Soc. 2019; 141: 14870
- 3c Xie S, Li S, Ma W, Xu X, Jin Z. Chem. Commun. 2019; 55: 12408
- 3d Zhao H, Ma G, Xie X, Wang Y, Hao J, Wan W. Chem. Commun. 2019; 55: 3927
- 3e Farmer ME, Wang P, Shi H, Yu J.-Q. ACS Catal. 2018; 8: 7362
- 3f Font M, Spencer AR. A, Larrosa I. Chem. Sci. 2018; 9: 7133
- 3g Shi H, Herron AN, Shao Y, Shao Q, Yu J.-Q. Nature 2018; 558: 581
- 3h Dong Z, Wang J, Dong G. J. Am. Chem. Soc. 2015; 137: 5887
- 3i Wang X.-C, Gong W, Fang L.-Z, Zhu R.-Y, Li S, Engle KM, Yu J.-Q. Nature 2015; 519: 334
- 3j Ye J, Lautens M. Nat. Chem. 2015; 7: 863
- 3k Zhang Y.-H, Shi B.-F, Yu J.-Q. J. Am. Chem. Soc. 2009; 131: 5072
- 4a Mihai MT, Williams BD, Phipps RJ. J. Am. Chem. Soc. 2019; 141: 15477
- 4b Montero Bastidas JR, Oleskey TJ, Miller SL, Smith MR, Maleczka RE. J. Am. Chem. Soc. 2019; 141: 15483
- 4c Davis HJ, Genov GR, Phipps RJ. Angew. Chem. Int. Ed. 2017; 56: 13351
- 4d Saito Y, Segawa Y, Itami K. J. Am. Chem. Soc. 2015; 137: 5193
- 4e Mkhalid IA. I, Barnard JH, Marder TB, Murphy JM, Hartwig JF. Chem. Rev. 2010; 110: 890
- 4f Cho J.-Y, Tse MK, Holmes D, Maleczka RE, Smith MR. Science 2002; 295: 305
- 4g Ishiyama T, Takagi J, Ishida K, Miyaura N, Anastasi NR, Hartwig JF. J. Am. Chem. Soc. 2002; 124: 390
- 5a Dey A, Sinha SK, Achar TK, Maiti D. Angew. Chem. Int. Ed. 2019; 58: 10820
- 5b Brochetta M, Borsari T, Bag S, Jana S, Maiti S, Porta A, Werz DB, Zanoni G, Maiti D. Chem. Eur. J. 2019; 25: 10323
- 5c Dutta U, Maiti S, Pimparkar S, Maiti S, Gahan LR, Krenske EH, Lupton DW, Maiti D. Chem. Sci. 2019; 10: 7426
- 5d Xu J, Chen J, Gao F, Xie S, Xu X, Jin Z, Yu J.-Q. J. Am. Chem. Soc. 2019; 141: 1903
- 5e Xu H.-J, Kang Y.-S, Shi H, Zhang P, Chen Y.-K, Zhang B, Liu Z.-Q, Zhao J, Sun W.-Y, Yu J.-Q, Lu Y. J. Am. Chem. Soc. 2019; 141: 76
- 5f Bag S, Jayarajan R, Mondal R, Maiti D. Angew. Chem. Int. Ed. 2017; 56: 3182
- 5g Dutta U, Modak A, Bhaskararao B, Bera M, Bag S, Mondal A, Lupton DW, Sunoj RB, Maiti D. ACS Catal. 2017; 7: 3162
- 5h Bag S, Patra T, Modak A, Deb A, Maity S, Dutta U, Dey A, Kancherla R, Maji A, Hazra A, Bera M, Maiti D. J. Am. Chem. Soc. 2015; 137: 11888
- 5i Bera M, Maji A, Sahoo SK, Maiti D. Angew. Chem. Int. Ed. 2015; 54: 8515
- 5j Chu L, Shang M, Tanaka K, Chen Q, Pissarnitski N, Streckfuss E, Yu J.-Q. ACS Cent. Sci. 2015; 1: 394
- 5k Tang R.-Y, Li G, Yu J.-Q. Nature 2014; 507: 215
- 5l Yang G, Lindovska P, Zhu D, Kim J, Wang P, Tang R.-Y, Movassaghi M, Yu J.-Q. J. Am. Chem. Soc. 2014; 136: 10807
- 5m Lee S, Lee H, Tan KL. J. Am. Chem. Soc. 2013; 135: 18778
- 5n Leow D, Li G, Mei T.-S, Yu J.-Q. Nature 2012; 486: 518
- 6 Kuninobu Y, Ida H, Nishi M, Kanai M. Nat. Chem. 2015; 7: 712
- 7a Koseki Y, Kitazawa K, Miyake M, Kochi T, Kakiuchi F. J. Org. Chem. 2017; 82: 6503
- 7b Arockiam PB, Fischmeister C, Bruneau C, Dixneuf PH. Green Chem. 2013; 15: 67
- 7c Aihara Y, Chatani N. Chem. Sci. 2013; 4: 664
- 7d Ferrer Flegeau E, Bruneau C, Dixneuf PH, Jutand A. J. Am. Chem. Soc. 2011; 133: 10161
- 7e Oi S, Aizawa E, Ogino Y, Inoue Y. J. Org. Chem. 2005; 70: 3113
- 7f Kakiuchi F, Kan S, Igi K, Chatani N, Murai S. J. Am. Chem. Soc. 2003; 125: 1698
- 7g Oi S, Fukita S, Hirata N, Watanuki N, Miyano S, Inoue Y. Org. Lett. 2001; 3: 2579
- 7h Murai S, Kakiuchi F, Sekine S, Tanaka Y, Kamatani A, Sonoda M, Chatani N. Nature 1993; 366: 529
- 8 Gagliardo M, Snelders DJ, Chase PA, Klein Gebbink RJ, van Klink GP, van Koten G. Angew. Chem. Int. Ed. 2007; 46: 8558
- 9 For a review on ruthenium-catalyzed remote meta-C–H functionalizations, see: Leitch JA, Frost CG. Chem. Soc. Rev. 2017; 46: 7145
- 10 Clark GR, Headford CE. L, Roper WR, Wright LJ, Yap VP. D. Inorg. Chim. Acta 1994; 220: 261
- 11 Sutter J.-P, Grove DM, Beley M, Collin J.-P, Veldman N, Spek AL, Sauvage J.-P, van Koten G. Angew. Chem., Int. Ed. Engl. 1994; 33: 1282
- 12 Coudret C, Fraysse S. Chem. Commun. 1998; 663
- 13a Clark AM, Rickard CE. F, Roper WR, Wright LJ. J. Organomet. Chem. 2000; 598: 262
- 13b Clark AM, Rickard CE. F, Roper WR, Wright LJ. Organometallics 1999; 18: 2813
- 14 Ackermann L, Novák P, Vicente R, Hofmann N. Angew. Chem. Int. Ed. 2009; 48: 6045
- 15 Ackermann L, Hofmann N, Vicente R. Org. Lett. 2011; 13: 1875
- 16 Hofmann N, Ackermann L. J. Am. Chem. Soc. 2013; 135: 5877
- 17 Li J, Warratz S, Zell D, De Sarkar S, Ishikawa EE, Ackermann L. J. Am. Chem. Soc. 2015; 137: 13894
- 18 Paterson AJ, St John-Campbell S, Mahon MF, Press NJ, Frost CG. Chem. Commun. 2015; 51: 12807
- 19 Li J, Korvorapun K, De Sarkar S, Rogge T, Burns DJ, Warratz S, Ackermann L. Nat. Commun. 2017; 8: 15430
- 20 Li G, Ma X, Jia C, Han Q, Wang Y, Wang J, Yu L, Yang S. Chem. Commun. 2017; 53: 1261
- 21 Li G, Gao P, Lv X, Qu C, Yan Q, Wang Y, Yang S, Wang J. Org. Lett. 2017; 19: 2682
- 22a Zhu Y, Han J, Wang J, Shibata N, Sodeoka M, Soloshonok VA, Coelho JA. S, Toste FD. Chem. Rev. 2018; 118: 3887
- 22b Wang J, Sánchez-Roselló M, Aceña JL, del Pozo C, Sorochinsky AE, Fustero S, Soloshonok VA, Liu H. Chem. Rev. 2014; 114: 2432
- 23 Liu X, Xu C, Wang M, Liu Q. Chem. Rev. 2015; 115: 683
- 24 Ruan Z, Zhang S.-K, Zhu C, Ruth PN, Stalke D, Ackermann L. Angew. Chem. Int. Ed. 2017; 56: 2045
- 25 Li Z.-Y, Li L, Li Q.-L, Jing K, Xu H, Wang G.-W. Chem. Eur. J. 2017; 23: 3285
- 26 Paterson AJ, Heron CJ, McMullin CL, Mahon MF, Press NJ, Frost CG. Org. Biomol. Chem. 2017; 15: 5993
- 27 Korvorapun K, Kaplaneris N, Rogge T, Warratz S, Stückl AC, Ackermann L. ACS Catal. 2018; 8: 886
- 28 Fumagalli F, Warratz S, Zhang S.-K, Rogge T, Zhu C, Stückl AC, Ackermann L. Chem. Eur. J. 2018; 24: 3984
- 29 Wang X.-G, Li Y, Liu H.-C, Zhang B.-S, Gou X.-Y, Wang Q, Ma J.-W, Liang Y.-M. J. Am. Chem. Soc. 2019; 141: 13914
- 30 Gandeepan P, Koeller J, Korvorapun K, Mohr J, Ackermann L. Angew. Chem. Int. Ed. 2019; 58: 9820
- 31 Sagadevan A, Greaney MF. Angew. Chem. Int. Ed. 2019; 58: 9826
- 32 Li G, Jia C, Cai X, Zhong L, Zou L, Cui X. Chem. Commun. 2020; 56: 293
- 33 Jia C, Wang S, Lv X, Li G, Zhong L, Zou L, Cui X. Eur. J. Org. Chem. 2020; 2020: 1992
- 34 Xu X, Tao N, Fan W.-T, Tu G, Geng J, Zhang J, Zhao Y. J. Org. Chem. 2020; 85: 13868
- 35a Li G, An J, Jia C, Yan B, Zhong L, Wang J, Yang S. Org. Lett. 2020; 22: 9450
- 35b Xu H.-B, Chen Y.-J, Chai X.-Y, Yang J.-H, Xu Y.-J, Dong L. Org. Lett. 2021; 23: 2052
- 35c Zhou Z.-X, Li J.-W, Wang L.-N, Li M, Liu Y.-J, Zeng M.-H. Org. Lett. 2021; 23: 2057
- 36 Yang S, Yan B, Zhong L, Jia C, Yao D, Yang C, Sun K, Li G. Org. Chem. Front. 2020; 7: 2474
- 37 Li G, Gao Y, Jia C, Wang S, Yan B, Fang Y, Yang S. Org. Lett. 2020; 22: 8758
- 38 Choi I, Müller V, Wang Y, Xue K, Kuniyil R, Andreas LB, Karius V, Alauzun JG, Ackermann L. Chem. Eur. J. 2020; 26: 15290
- 39 Moselage M, Li J, Kramm F, Ackermann L. Angew. Chem. Int. Ed. 2017; 56: 5341
- 40 Korvorapun K, Moselage M, Struwe J, Rogge T, Messinis AM, Ackermann L. Angew. Chem. Int. Ed. 2020; 59: 18795
- 41 Ackermann L, Novák P. Org. Lett. 2009; 11: 4966
- 42 Yang Y, Lan J, You J. Chem. Rev. 2017; 117: 8787
- 43 Li G, Li D, Zhang J, Shi D.-Q, Zhao Y. ACS Catal. 2017; 7: 4138
- 44 Li B, Fang S.-L, Huang D.-Y, Shi B.-F. Org. Lett. 2017; 19: 3950
- 45 Korvorapun K, Kuniyil R, Ackermann L. ACS Catal. 2020; 10: 435
- 46a Fujihara T, Tsuji Y. Beilstein J. Org. Chem. 2018; 14: 2435
- 46b Tortajada A, Juliá-Hernández F, Börjesson M, Moragas T, Martin R. Angew. Chem. Int. Ed. 2018; 57: 15948
- 47a Ackermann L, Althammer A, Born R. Tetrahedron 2008; 64: 6115
- 47b Ackermann L, Althammer A, Born R. Synlett 2007; 2833
- 48 Barlow HL, Teskey CJ, Greaney MF. Org. Lett. 2017; 19: 6662
- 49 Jia C, Wu N, Cai X, Li G, Zhong L, Zou L, Cui X. J. Org. Chem. 2020; 85: 4536
- 50 Jing K, Li Z.-Y, Wang G.-W. ACS Catal. 2018; 8: 11875
- 51a Petrone DA, Ye J, Lautens M. Chem. Rev. 2016; 116: 8003
- 51b Zhao X, Dimitrijević E, Dong VM. J. Am. Chem. Soc. 2009; 131: 3466
- 51c Hartwig JF. Nature 2008; 455: 314
- 52 Saidi O, Marafie J, Ledger AE. W, Liu PM, Mahon MF, Kociok-Köhn G, Whittlesey MK, Frost CG. J. Am. Chem. Soc. 2011; 133: 19298
- 53 Marcé P, Paterson AJ, Mahon MF, Frost CG. Catal. Sci. Technol. 2016; 6: 7068
- 54 Li G, Lv X, Guo K, Wang Y, Yang S, Yu L, Yu Y, Wang J. Org. Chem. Front. 2017; 4: 1145
- 55 Wang L, Ackermann L. Chem. Commun. 2014; 50: 1083
- 56 Teskey CJ, Lui AY. W, Greaney MF. Angew. Chem. Int. Ed. 2015; 54: 11677
- 57 Yu Q, Hu L, Wang Y, Zheng S, Huang J. Angew. Chem. Int. Ed. 2015; 54: 15284
- 58 Warratz S, Burns DJ, Zhu C, Korvorapun K, Rogge T, Scholz J, Jooss C, Gelman D, Ackermann L. Angew. Chem. Int. Ed. 2017; 56: 1557
- 59 Reddy GM, Rao NS, Maheswaran H. Org. Chem. Front. 2018; 5: 1118
- 60 Fan Z, Lu H, Cheng Z, Zhang A. Chem. Commun. 2018; 54: 6008
- 61a Nepali K, Lee H.-Y, Liou J.-P. J. Med. Chem. 2019; 62: 2851
- 61b Ono N. The Nitro Group in Organic Synthesis. 2001. Wiley-VCH; Weinheim:
- 62 Fan Z, Ni J, Zhang A. J. Am. Chem. Soc. 2016; 138: 8470
- 63 Liu D, Luo P, Ge J, Jiang Z, Peng Y, Ding Q. J. Org. Chem. 2019; 84: 12784
- 64 Chen J, Huang T, Gong X, Yu Z.-J, Shi Y, Yan Y.-H, Zheng Y, Liu X, Li G.-B, Wu Y. Adv. Synth. Catal. 2020; 362: 2984
- 65 Sasmal S, Sinha SK, Lahiri GK, Maiti D. Chem. Commun. 2020; 56: 7100
- 66a Gandeepan P, Ackermann L. Chem 2018; 4: 199
- 66b Zhao Q, Poisson T, Pannecoucke X, Besset T. Synthesis 2017; 49: 4808
- 67 Fan Z, Li J, Lu H, Wang D.-Y, Wang C, Uchiyama M, Zhang A. Org. Lett. 2017; 19: 3199
- 68 Fan Z, Lu H, Zhang A. J. Org. Chem. 2018; 83: 3245
- 69 Zhang D, Gao D, Cai J, Wu X, Qin H, Qiao K, Liu C, Fang Z, Guo K. Org. Biomol. Chem. 2019; 17: 9065
- 70 Guo X, Li C.-J. Org. Lett. 2011; 13: 4977
- 71 Liu W, Ackermann L. Org. Lett. 2013; 15: 3484
- 72 Leitch JA, McMullin CL, Paterson AJ, Mahon MF, Bhonoah Y, Frost CG. Angew. Chem. Int. Ed. 2017; 56: 15131
- 73a Yuan C, Zhu L, Zeng R, Lan Y, Zhao Y. Angew. Chem. Int. Ed. 2018; 57: 1277
- 73b Yuan C, Zhu L, Chen C, Chen X, Yang Y, Lan Y, Zhao Y. Nat. Commun. 2018; 9: 1189
- 74 Wang X.-G, Li Y, Zhang L.-L, Zhang B.-S, Wang Q, Ma J.-W, Liang Y.-M. Chem. Commun. 2018; 54: 9541
- 75 Ackermann L, Vicente R, Potukuchi HK, Pirovano V. Org. Lett. 2010; 12: 5032
- 76 Cheng Y, He Y, Zheng J, Yang H, Liu J, An G, Li G. Chin. Chem. Lett. 2021; 32: 1437
- 77 Ramesh B, Jeganmohan M. Org. Lett. 2017; 19: 6000
- 78a Peglow TJ, da Costa GP, Duarte LF. B, Silva MS, Barcellos T, Perin G, Alves D. J. Org. Chem. 2019; 84: 5471
- 78b Rogge T, Ackermann L. Angew. Chem. Int. Ed. 2019; 58: 15640
- 78c Zhang W, Baudouin E, Cordier M, Frison G, Nay B. Chem. Eur. J. 2019; 25: 8643
- 78d Hayashi Y. Chem. Sci. 2016; 7: 866
- 78e Yu Y.-Q, Xu D.-Z. Synthesis 2015; 47: 1869
- 78f Li B, Bheeter CB, Darcel C, Dixneuf PH. ACS Catal. 2011; 1: 1221
- 78g Ackermann L, Born R, Álvarez-Bercedo P. Angew. Chem. Int. Ed. 2007; 46: 6364
- 79 Li G, Zhu B, Ma X, Jia C, Lv X, Wang J, Zhao F, Lv Y, Yang S. Org. Lett. 2017; 19: 5166
- 80 Wei W, Yu H, Zangarelli A, Ackermann L. Chem. Sci. 2021; in press
For selected reviews on C–H functionalizations, see:
For selected reviews on remote meta- and para-C–H functionalizations, see:
For selected examples of palladium-catalyzed remote C–H functionalizations, see:
For selected examples of iridium-catalyzed remote C–H functionalizations, see:
For a recent review on template-assisted C–H functionalizations, see:
For selected examples, see:
For selected examples, see:
For selected reviews on transition-metal-catalyzed carboxylations, see:
For selected examples of C–H activations with RuCl3, see:
For selected reviews on C–X formations, see:
For selected examples of twofold C–H functionalizations, see: